「ディジタル信号処理の基礎」

(第1日)

2014.11.10-11

東京電機大学 金田 豊 kaneda@c.dendai.ac.jp http://www.asp.c.dendai.ac.jp/

クイズです
第2問
次の量のうち、ディジタル量とみなしても
よいものにOを、みなせないものに ×
をつけよ。 (1) 200
(2) 0.13
(3) 3/7

アナログ

, パルスを なめらかに つなぐ

信号

ディジタル信号は数列

{ $x(0), x(1), x(2), x(3), x(4), \dots$ }

例えば、

 $\{0.85, -0.34, -0.34, 0.85, -0.98, 0.65, \ldots \}$

である。

しかし、これでは、直観的にわかりにくいので、 グラフ化して視覚化することが多い。

標本化定理 再考(その3)

◇ 毎回「松」では計算が大変そうだが、
→ 大事なところでは念入りに補間すべき

◇ 勘違いや補間の手間を避けたい場合などには
いっそ高い周波数で標本化したほうが
楽な場合もありそう。

各種べクト	トルの内積
ベクトル	内 積
幾何ベクトル	aੈ bੈ cosθ
数ベクトル 離散関数ベクトル	a [*] b
連続関数ベクトル	∫a [*] (t) b(t)dt
確率ベクトル	E [a [*] ·b] _{E∶期待値}
・それぞれは、幾何ベクト 考えることができる。 ・内積が0となる場合「ad	ルと同じイメージで zbは直交している」と言う。

DFTの行列表現と線形代数学的解釈				
a=ー2π/N と置くと → exp(-j2πn k/N)= e ^{j nka}				
$ \begin{pmatrix} X(0) \\ X(1) \\ X(2) \\ \vdots \\ X(N-1) \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 & \cdots & 1 \\ 1 & e^{ja} & e^{j2a} & \cdots & e^{j(N-1)a} \\ 1 & e^{j2a} & e^{j4a} \\ \vdots & \vdots \\ 1 & e^{j(N-1)a} & e^{j2(N-1)a} \end{pmatrix} \begin{pmatrix} x(0) \\ x(1) \\ x(2) \\ \vdots \\ \vdots \\ x(N-1) \end{pmatrix} $				
スペクトル 直交(ユニタリ)行列 信号				
N次元ベクトルからN次元ベクトルへの直交変換				

DF	「とz 変換の)対比
		」、周波数
	時間信号 <	^ スペクトル
z 変換	<mark>任意個数</mark> の 離散信号	<mark>連続</mark> スペクトル (PCで扱えない) → 理論検討用
DFT	<mark>N点</mark> の 離散信号	N点の 離散スペクトル (PCで扱える) → 実用的

窓関数のトレードオ	フ

- 1) 窓関数の形状 サイドローブ と ピーク幅 のトレードオフ
- 2) 窓関数の長さ 時間分解能 と 周波数分解能 のトレードオフ

非線形系

- ・線形系の性質が満足されない系。
- ・厳密には、多くの系が非線形系。
 非線形の程度が小さい系
 (または、入力の範囲など)を
 線形系とみなして信号処理を行う。
- ・非線形の程度が大きいと信号処理の
 効率が低下するので、注意が必要である。

音で感じる非線形

 ・非線形系では高調波歪が発生することが多い。
 (スピーカ系では、オーバーロードの時など 音が歪む、割れる)

・ランダム(非周期)信号では、 非線形の発生は「耳で」気づきにくい。

インパルス応答(まとめ)

- 1) ディジタル系の単位サンプル信号 δ (n)は アナログ系のインパルス信号 δ (t)と等価
- 2) ディジタル系の単位サンプル応答を インパルス応答と呼ぶ
- インパルス応答は、
 線形系の最重要基本量

たたみ込み
線形系の出力 y(n) は、
入力信号 x(n) と、
系のインパルス応答 g(n) との
たたみ込み演算 * で表される。

$$y(n) = x(n) * g(n) = \sum_{m=-\infty}^{\infty} x(m) \cdot g(n-m)$$

<線形系特有の演算>
線形系の性質からたたみ込み演算の
必然性が導出できる

(定理) たたみ込みの可換性

$$y(n) = \sum_{m=-\infty}^{\infty} x(m)g(n-m) = \sum_{m=-\infty}^{\infty} g(m)x(n-m)$$

 $y(n) = x(n) * g(n) = g(n) * x(n)$
インパルス応答が g(n) である系に、
信号 x(n) を入力したときの出力
= インパルス応答が x(n) である系に、
信号 g(n) を入力したときの出力

インパルス応答の因果性を
考慮した表示
$$y(n) = \sum_{m=-\infty}^{\infty} x(m)g(n-m) = \sum_{m=-\infty}^{\infty} g(m)x(n-m)$$

インパルス応答の因果性 $\rightarrow g(m) = 0$ for $m < 0$
$$y(n) = \sum_{m=-\infty}^{n} x(m)g(n-m) = \sum_{m=0}^{\infty} g(m)x(n-m)$$

FIR(Finite Impulse Response) フィルタ 有限 インパルス応答

IIR(Infinite Impulse Response) フィルタ 無限 インパルス応答

(p.44)

フィルタの安定条件(IIRフィルタ)

$$G(z) = \frac{b_0 \prod_{i=1}^{q} (1-q_i z^{-1})}{\prod_{i=1}^{p} (1-p_i z^{-1})}$$
フィルタが安定である(発散しない)条件は、
その伝達関数 G(z) の
すべての極 p_i (i = 1,2,...,P)の絶対値が
| p_i | <1

極と零点に関する一つの性質

$$G(z) = \frac{b_0\prod\limits_{i=1}^{Q}(1-q_i z^{-1})}{\prod\limits_{i=1}^{P}(1-p_i z^{-1})}$$

◇ G(z) の分子分母は実係数多項式なので、
共役数はともに根。
例) a+jb が極(零点)なら、a-jb も 極(零点)

基本的には、差分方程式

$$y(n) = \sum_{i=1}^{P} a_i y(n-i) + \sum_{i=0}^{Q} b_i x(n-i)$$

を、DSPやCPUのプログラミングで実行

(ただし、FIR フィルタには いくつかの 便利な性質がある) → 関連事項も交えて説明する

その他の設計(実現?)法

- 1)所望のインパルス応答を実現するフィルタ
 →FIRフィルタの場合は、
 所望のインパルス応答をフィルタ係数とすればよい
 頭部伝達関数(HRTF)、
 室内音響シミュレータ、など
- その他の演算によって得られるフィルタ 逆フィルタなど (後述)

フィルタの設計(まとめ)

- ◇ 通常は各種設計プログラムの利用が 便利
- ◇ 簡易法を用いる場合は、いくつかの 注意が必要

乗算や非線形処理の際の 注意点 (まとめ)

ディジタル領域で 信号同士、スペクトル同士の乗算や 非線形処理を行うと、 高周波成分が発生して 折り返し歪が発生する。

これを防ぐためには、 あらかじめ、補間を行って、 サンプリング周波数を 上昇させておくことが必要である

信号処理対象のモデル化

信号処理を行うにあたって、 対象とする系をモデル化し 数式で表現することが必要

音響系を例に説明する

ŢĹ

信号処理対象のモデル化(まとめ)

 ◇ 伝達関数を用いて、対象(音響系)を モデル化(等価回路表現) することがディジタル信号処理の第一歩
 ◇ 伝達関数はインパルス応答より得られる
 ◇ ブラインド処理でもモデル化を意識する ことが重要

⑤ 逆FFT

今後の課題

- ・各測定用信号の長・短所の比較検討
- ・目的に応じた測定用信号、測定手順の 選択指針作成
- ・ノートパソコンなどで質のよいインパルス 応答測定ができるような環境作り、 ノウハウの蓄積、開示。

追加情報

音響学会技術講習会

「音響インパルス応答計測の基礎」

2014年 8月22日 開催 の

- ・pdf 資料
- ・参考プログラム
- が、ホームページからダウンロードできます

誤差パワー
$\mathbf{y}(\mathbf{n}) = \sum_{j=1}^{L} \mathbf{w}_j(\mathbf{n}) \mathbf{x}(\mathbf{n}-\mathbf{j}+1)$
$\mathbf{e}(n) = \mathbf{d}(n) - \mathbf{y}(n)$
適応フィルタの目標:
誤差パワー J=E[e(n) ²] を最小化
$J = E[{d(n)-y(n)}^2]$
= E[{d(n) - $\sum w_j(n) x(n-j+1)$ } ²]
誤差パワー J は <mark>係数 w_j(n) の2次</mark> 関数である
(p.138)

2種類の指向性制御方式の比較

- 1)加算形:目的音を強調 超指向性アレー
 〇処理が簡単 ×大規模
- 2)減算形:不要音(雑音)を除去 適応型アレー
 〇小規模 ×処理がやや複雑

