IEICE TRANS. FUNDAMENTALS, VOL. E78-A, NO. 10 OCTOBER 1995

1355

|PAPER
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SUMMARY This paper proposes a new algorithm called
the fast Projection algorithm, which reduces the computational
complexity of the Projection algorithm from (p+1) L+ O (p%)
to 2L 420p (where L is the length of the estimation filter and p
is the projection order.) This algorithm has properties that lie
between those of NLMS and RLS, i.e. less computational com-
plexity than RLS but much faster convergence than NLMS for
input signals like speech. The reduction of computation consists
of two parts. One concerns calculating the pre-filtering vector
which originally took O(p®) operations. Our new algorithm
computes the pre-filtering vector recursively with about 15p
operations. The other reduction is accomplished by introducing
an approximation vector of the estimation filter. Experimental
results for speech input show that the convergence speed ol the
Projection algorithm approaches that of RLS as the projection
order increases with only a slight extra calculation complexity
beyond that of NLMS, which indicates the efficiency of the
proposed fast Projection algorithm.

key words: adaptive filtering, projection algorithm, complexity
reduction

1. Introduction

Adaptive filtering techniques are being used in many
applications, such as echo canceling and vibration
control [1]. Among the many adaptive filtering algor-
ithms, the LMS (Least Mean Squares) and NLMS
(Normalized LMS) algorithms [2] are widely used in
practice because of their simplicity. Although the
computational complexity of the LMS and NLMS
algorithms is low, convergence is very slow and track-
ing is poor for a colored input signal like speech. The
RLS (Recursive Least Squares) algorithm is known to
overcome this problem for colored input signal.
However, its computational complexity is four times
that of NLMS, even for the fast version [3], [4].

In recent years, an algorithm called Projection (or
Affine Projection) [5] has been drawing attention.
This algorithm has properties that lie between those of
NLMS and RLS, i.e. less computational complexity
than RLS but much faster convergence than NLMS for
input signals like speech, which can be modeled as a
low-order AR process. The Projection algorithm,
however, still requires more computation than NLMS,
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which remains a problem.

Recently, efforts have been made to reduce the
amount of computation. These can be categorized into
two approaches. Both calculate the adjustment quan-
tity based on the same equations but they differ in
adaptation interval. One applies block operations [6]
-[9], in which adaptation is performed every block
shift length. Although block-wise operation reduces
computation, it is reported that it degrades the conver-
gence speed [6]. The other is approach removes redun-
dant computation from the original iterative Projec-
tion algorithm, which preserves the original perfor-
mance [10}-[12]. Following the latter approach this
paper proposes a new algorithm called the fast Projec-
tion algorithm, which significantly reduces the
computational complexity of the Projection algorithm.
The reduction consists of two parts, one of which was
addressed by Maruyama [10] for the simplest case.

Section 2 explains the NLMS and Projection
algorithms, Sect.3 derives the proposed complexity
reduction method, and Sect.4 shows experimental
results for speech input. Conclusions are presented in
Sect. 5.

2. Normalized Least Mean Squares (NLMS) and
Projection Algorithms

2.1 Framework of the Study

A block diagram of an adaptive filter is shown in Fig.
1. Assume that the unknown system can be modeled
by an FIR filter whose coefficients are written as a
vector h={h, hy, ---, h,.]¥, where L denotes the num-
ber of taps and T denotes transposition. The un-
known system is estimated by an FIR filter with
coefficients & (k) =[h (k), hs(k), ---, AL (k)]", where
k is the discrete time index. The x(k), y(k), y(k),
and e (k) in Fig. 1 respectively denote the input to the
unknown system, the output from the unknown system,
the estimated output, and the estimation error. The
signal y (k) is also called the desired signal.

In this diagram, the estimation filter & (k) is
adjusted at every sample instance so as to make the
estimation output y (k) close to the unknown system
output y (k) by adding an adjustment vector Jk (k).
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Fig. 1 Block diagram of an adaptive filter.
B (k+1) =k (k) +p(k) 4k (k) (1) y (k) =X (k)"[h (k) + 4k (k)] (8)
Here, (k) is a scaling factor called the step size, or equivalently
which controls the convergence speed and the amount AL o B TA _
of residual error. We consider z(k) time-variant in X (k)'dh (k) =y (k) =X (k)"h (k) =e(k), (9)
the general case, although it sometimes takes a time where ‘
constant value. y()=[y (), y(k—1), =, y(k—p+D]* (10)
2.2 NLMS Algorithm X (k)=[x(k), x(k—1), -, x(k—p+1)] (11)
e(k)=y(k) =X (k)Th (k). (12)

In the NLMS algorithm, the adjustment vector 4k (k)
is determined as the minimum-norm solution of the
following equation.

y(k)=x(k)T[h(k)+4h(k)], (2)
where
x(k)=[xk), x(k—1), -, x(k—L+1D]". (3)

Equation (2) means /& (k) is adjusted so that it outputs
y(]c) for input x (k) when px(k)=1. The solution of
Ah (k) is written as

Ak (k) = Tx ( (k)”z e(k), (4)
where

e(k)=y (k) —y(k) (5

y (k) =x(k)"h (k). (6)

2.3 Projection Algorithm

The Projection algorithm (or Affine Projection algor-
ithm) was proposed as a generalization of the NLMS
algorithm [5]. In the Projection algorithm of order p
(£ L), the adjustment vector 44 (k) is determined so
as to satisfy the following p equations.

y(k)=x(k)[h(k)+4h (k)]
y(kﬂ):x(kﬂ)T[/Z(k)+A/£<k)] (7

y(k— p—}-l)—x(k p+0)[h(k)+ 4k (k)]

In matrix form,

Here, e (k) is called the error vector.

Since the number of unknown variables L is
greater than the number of equations p, Eq. (7) has an
infinite number of solutions. In the sense of a
minimum-norm solution, however, 4k (k) is uniquely
determined.

Ak (k) =X (k) [X (k) "X (k)] e (k) (13)
This is rewritten as

Ak (k) =X (k) g (k), (14)
where

g(k)=R(k)'e(k) (15)

R(k)=X (k)X (k). (16)

We call g(k) a pre-filtering vector in this paper,
because it filters the row vectors of X (k) to synthesize
the adjustment vector 4k (k).

Based on Egs. (1) and (12), and using the fact
that 4k (k—1) is determined at & —1 such’ that

y(k—j) —x(k—j)T[h(k—1)+ 4k (k—1)]=0,
(17)

the (j4+1)-th(j=1, ---, p—1) element of the error
vector e (k) can be updated as follows.

e (k) =y (k—j) —x(k—j)"h (k)
=ylk—j) —x(k—j) [k (k—1)
+ulk—1)dh(k—1)]
=u(k—1)[yk—j) —x(k—
+ 4k (k—1))]

TR (k—1)
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+ (= plk=D) [y (k=)
—x(k=j)Th(k—1)]

=(1—ulk—=1))e;(k—1). (18)
This update is rewritten in vector form as
e(k)
e(k)= (19)

(I—plk—1))eps(k—1) |

where e,_1 (k—1) consists of the first p—1 elements of
e(k—1), namely

epfl(k—l):[ﬁ(k—l), ex(k—1),
e ep (K—=1)]" (20)

Equations (5) and (19) indicate that the error vector
is updated with p multiplication-addition operations.

To obtain Ak (k), the original Projection algor-
ithm must first calculate R (k) ™', then compute g (k)
by Eq. (15), and finally multiply X (k) by g(k) as
shown in Eq. (14). Calculation of R (k)" increases
the computational complexity, — specifically,
multiplication-addition operations—by O (p®). Multi-
plying X (k) by g(k), together with updating 4 (k)
by Eq. (1), requires pL multiplication-addition opera-
tions. Including calculation of y(k) by Eq. (6),
which takes L multiplication-addition operations, the
total computational complexity of the original Projec-
tion algorithm is about (p+1) L+ O(p®). Because of
this computational burden, the Projection algorithm
has been considered to be impractical.

3. Fast Projection Algorithm

This section introduces a new algorithm called fast
Projection. This reduces the computational require-
ment to 2L +20p. The reduction consists of two parts,
one is the recursive updating of the prefiltering vector
g(k), and the other involves pre-filtering X (k) by
g (k).

3.1 A recursive Update Formula for Pre-Filtering
Vector g (k)

Computing g(k) requires O(p®) multiplication-
addition operations. For-small value of p, this calcula-
tion cost is much smaller than L, and thus negligible.
As p gets larger, however, the cost becomes comparable
to or much larger than L. We focus on the simultane-
ous equations of Eq. (15) and show that the pre-
filtering vector g (k) can be recursively obtained with
O (p) operations.

According to Eqgs. (11) and (16), R(k) isa pXp
matrix that can be rewritten as

R(k):gxp<k+1—i>xp<k+1—i>f, 1)
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where
xp (k) =[x(k), x(k—1), -, x(k—p+1)]". (22)
Similarly, we define (p—1)-th order covariance matrix
RP—I (k)’
L
Ry, . (k) :lglxp—l(k‘{‘ =) xp  (k+1—0)7, (23)

where
xo (k) =[x(k), x(k—1), -, x(k—p+2)]".
(24)

The inverse matrices of these covariance matrices have
the following two relationships [14].

_0 . 0
| L aal”
R(k)'= :iRp—1(k—1) +W(25)

0]
- O
1 R b(k)b(k)"
RUT= RO 0 1T B 29
0 0

Here, a(k), b(k), F(k), and B (k) respectively
denote the forward linear prediction coefficient vector,
the backward linear prediction coefficient vector, the
minimum value of the sum of forward a posteriori
prediction-error squares, and the minimum value of the
sum of backward a posteriori prediction-error squares.
It is known that a(k), b(k), F(k), and B (k) satisfy
the following augmented normal equations [14].

R(k)a(k)=[F(k), 0, -, 0] (27)
R(k)b(k)=[0, -, 0, B(k)]" (28)
By substituting Egs. (19) and (25) into (15), we get

0
k)= (1—u(k—
g () = (1= p( 1))[“]{‘1)}

el el o), (29)
where
fk—1)=Rp, (k—1)"ey1(k—1). (30)
Similarly, from Egs. (15), (19), and (26), we get
fk)| b(k)Te (k)
{ 0 }~g(k) *Wb(k)- (31)

To avoid small denominators in the second term of the
right side of Egs. (29) and (31), we should add a
positive number § to denominators F (k) and B (k) as
in the following equations.
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0
k)=00—plk—1
g (k) = (1= p( ))L’(k~l)1

a(k)e(k)

T F(k)+6 a (k) ‘ (32)
flk)| b(k)7e (k)
| 0 }—g(k)—mb(k) (33)

Equations (32) and (33) give the recursion for-
mula for updating g (k). Equation (32) indicates that
g (k) is derived from f (k—1), which is derived from
g(k—1) as can be seed in Eq. (33). The number of
multiplication-addition operations for Egs. (32) and
(33) in 5p. The a(k), b(k), F(k), and B (k) values
are calculated using the sliding window version of the
FTF algorithm with about 10p multiplication-
addition operations [13] (FTF is known to have
numerical instability. A remedy for this problem is to
feed back numerical errors [4], which is also applicable
to the sliding window version of the FTF.) In total,
about 15p operations are required to derive g (k) with
our proposed algorithm.

3.2 Pre-Filtering X (k) by g(k)

The reduction of the computational complexity of the
pre-filtering operation uses the approximation vector
z (k), which was first introduced by Maruyama for p=
2 [10]. In this section, we extend Maruyama’s method
to a more general formula.

Based on Eq. (1), A(k-+1) is written as

h(k+1)=p(k)dh (k) +p(k—1) dk (k—1)
+-+£(0)

zgp(k+1~i)dli(k+l~i)+Ii(0).

(34)

By substituting Eq. (11) into Eq. (14), we get 4k (k)
as

R b
AR (k) = 2,00 x (k= +1), (39)
where g;(k), (j=1, ---, p) are elements of the vector

g (k). From Eqgs. (34) and (35), A (k+1) is written as
a linear combination of the past input signal vectors.
. k p
h(k+1)=§ﬂ(k+1~i) ;gj(kﬂ—i)
cx(k—i—j+2)+k(0)
=u (k) (k) x (k) + g (k) x (k—1) +---
+gp (k) x(k—p+1)]
+ulk—=D[g(k—1)x(k—1)
+aplk—1)x(k—2)+
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ot gp(k—1) x (k—p) ]+
+,u(1)[g1(1)x(1) +g:(1) x(0) +---
+g, (D x2—p) ]+ £(0)

kA-p—1

=2 ss(K)x(k+1—i)+k(0), (36)
where

su(k) =p(k) g (k)

$2(k) =p(k) go (k) + p(k—1) g (k—1)

(k) = (k) gs (k) + p(k—1) ga(k—1)
+u(k—2) g (k—2)

sp(k) =p(k)gp (k) +p(k—1)gp1(k—1) +--
Tulk—pt+Daglk—p+1)

spr1 (k) =plk—1) gp(k—1) + p(k—2) gp 1
(k=2)4+ulk—p)g(k—p) (37)

Spya (k) =p(k—2) gp(k—2) +p(k—3)
"gp-1(k=3) +-+ulk—p—1)
cqlk—p—1

Spep—2(k) =1(2) gp(2) + (1) gp—1 (1)
Sk+p—1(k) :ﬂ(l)gp(l)-

We call s;(k) smoothing coefficients. As can be seen
from Eq. (37), s;(k) are updated as

for i=1: s1(k) =p(k) g (k)
for =2, ---, p: s;(ky=s8;_1(k—1)
+ulk)g: (k)
for i=p+1, - k+p—1: s;(k)=s,_1(k—1).
(38)

Note that all that require computation in the update
are s;(k) for i=1, ---, p, and that the update formula
is written in vector form as

S(k)ZLP_l(k_l)}rﬂ(k)g(k), (39)
where
s (k) =[s(k), 5(k), -, sp(k)]" (40)
s (k—1)=[s1(k—1), s,(k—1),
e S (k—1) 17 (41)

Now, taking the summation from i=pto k+p—1
instead of from i=1to k+p—1, as shown in Eq. (36),
we define the approximation vector z(k+1) of A(k
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+1) as

Etp—1 R
z(k+1)= ZZP si(kYx(k+1—1)+k(0). (42)
This linear combination becomes constant after time &
+1, because the coefficients s;(k), (i=p, -, k+p—1)
are not updated after time k+1. From Egs. (15) and
(37), this approximation vector z (k1) is expected to
approach £ (k+1) as it converges because g (k), and
thus s;(k) (i=1, ---, p) approach zero as the error
approaches zero.

The value of z(k+1) is recursively updated with
L multiplication-addition operations for every sample
instance as follows.

z(k+1)=s(k)x(k+1—p)
-i-t‘;:si(k)x(k%—l—i) +£(0)

=s,(k)x(k+1—p)+z(k)
From Eq. (42), Eq. (36) is rewritten as

(43)

Ii(k—l—l)zz(k+1)—&-gsi(k)x(kJrl—i). (44)

Therefore calculating E(k+1) via g(k+1) requires p
X L computations, which is the same number as the
conventional method using Eq. (14). This means that
introducing the approximation vector z{(k+1) is not
an efficient way to obtain A (k). In many adaptive
filtering applications, however, it is sufficient to obtain
the estimated output of the unknown system jy(k),
even if A(k+1) is not available at every sample
instance.

In the following, we show that the estimated
output of the unknown system j (k) can be calculated
using z (k) rather than using & (k). By antedating Eq.
(44) from k-+1 to k, we obtain

B =z (k) +§si(k—1)x(k—i)

=z(k) +[x(k—1), x(k—2),
v, X (k—p+1) 5o (K—1). (45)
Equation (6) for j (k) is rewritten using Eq. (45).
k) =x (k) 2 (k) + 11 (k) Tspr (k—1) (46)

Here, rp—1 (k) is a (p—1)-th order vector that consists
of covariances of x (k).

ror (k) =[x (k) x(k—1), x(k)"™x(k—2),
e x (k) x(k—p+1)]7 (47)

By Eq. (46), j(k) 1is obtained with L-+p—1
multiplication-addition operations using approxima-
tion vector z(k), covariance vector r,_,(k) and
smoothing vector s,_; (k).

Since the i-th (i=1, ---, p—1) element of the covari-
ance vector rp— (k) is written as
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x (k) Tx(k—i):igl)x(k—n)x(k—i—n)

=S x(k—1-mx(k—1—in)
+x(k)x(k—1i)
—x(k—L)x(k—i—L)

=xk—1)Tx(k—i—1)
+x(k)x(k—1i)

—x(k—L)x(k—i—L). (48)
r,—1 (k) is updated as
o1 (k) =rp_i(k—1) +x (k) xp_1 (k—1)
—x(k—L)xp_1(k—L—1). (49)

Thus the covariance vector ry_;(k) is recursively up-
dated with 2(p—1) multiplication-addition opera-
tions.

Here we introduce the approximation vector
z (k). The pre-filtering process by Eq. (14), together
with the update of the estimation filter £ (k) by Eq.
(1), which takes pl operations in the original algorith-
m, is replaced by the update of the approximation
vector z (k) by Eq. (43) which takes only L opera-
tions. Using the approximation vector z(k), the
covariance vector r,—;(k), and the smoothing vector
sp-1{k), the estimated output of the unknown system

Table 1 Fast Projection algorithm.

Number of
multiplication-
additions
Initialization (divisions)
_ T, T T T
r,_1(0) = [x(0)'x(-1),x(0)'x(-2), ..., x(0) x (-p+1)] ,
F(0) =0 €(0) =0 , s(0) =0
Lot (8 =x,_ (k=D +x(k)x, (k=1) -x(k—L)x, (k-L-1)| 2p
2 30 =x®z® +r, (07, k-1) Lip-1
3. (k) =y(R) -5k 1
4. e(k) = ek 4
(I-p(k=1))e, ,(k~1)
5. Computing a (k), b (k), F (k), and B (k) by the sliding window 10p )
version of FTF.{13]
T
6. - (-ph- 0 |,alel®
B = (ol 1))[f(k~1)j]+ Fo+s *® 3p
rl b e®
7. |:0j|~g(k) GET b (k) 2p (D
& s = O linmem P
s, 1 (k=1)
L
9. z2(k+1) = z(k) +s,(K)x(k—p+1)
Total (approximately) 2L+20p
€]
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0 ; 1
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Fig.2 Comparison of the number of operations between the
fast Projection algorithm and the original Projection algorithm.

y (k) is calculated by Eq. (46).

The complete procedures of the proposed algorith-
m are summarized in Table 1, where the approximate
numbers of operations are also listed. The total
computational requirement is about 2L +20p, which is
much smaller than the (p+1) L+ O (p?) of the conven-
tional method. Figure 2 compares the number of
operations per update of the fast Projection algorithm
(2L +20p) and the original Projection algorithm
((p+1) L+ p*/6+p? for L=>500.

4. Experimental Results

Convergence curves for various orders of the Projec-
tion algorithm and fast RLS [4] are shown in Fig. 3, in
which the normalized error is defined as

2|
¥ () =5 (k)

normalized error = E[ZO logio

(50)

Here, E [.] means the average of 100 trials and the
temporal average of 100 successive times. The
computational requirement ratios (c.r.r.) to NLMS are
given in parentheses in Fig. 3, where computational
requirements are estimated as 2L for NLMS, 2L +20p
for fast Projection, and 7L for fast RLS (L is the filter
length and p is the projection order.) The conditions
of this computer simulation are: filter length L is 128,
impulse response length of the unknown system is also
128, and the input signal is speech. Noise is added to
y (k) with 40 dB SNR. The time-invariant step sizes u
and forgetting factor A are selected through trial and
error so that the steady-state normalized errors are the
same for all methods; namely, =1 for NLMS, px==0.7
for p=2, p=0.5 for p=8, £=0.2 for p=32, and A=
0.9973. The computer experiments are done with
double precision, because calculating with single preci-
sion sometimes causes an accurmulation of round-off
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40 ‘ x
r '/- fast RLS (car. =3.5)
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o 301
= L
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o 20¢
g o p=8(crrn=16)

© p=2(rn=12) ]

£ \ ]

2 10 NLMS (c.rr=1) g

C.I.I.: computational requirement ratio to NLMS ]

ot . L , el ]

0 1 2 3 4 5
Time (s) :
Fig.3 ERLE curves for various orders of fast projection,
NLMS, and fast RLS algorithms Computational requirement
ratios (c.r.r.) to NLMS are given in parentheses. The impulse
response is changed at time 1.25 (s).

erTorS.
From the figure, we can see that the convergence
speed of the Projection algorithm approaches that of
fast RLS as projection order p increases while the
calculation complexity remains as much as that of
NLMS. This result indicates that the proposed fast
Projection algorithm is efficient because it improves
convergence speed with little extra calculation cost.

5. Conclusion

The fast version of the Projection algorithm reduces
the total computation complexity from (p-+1) L+
O(p®) to 2L+20p (where L is the length of the
estimation filter and p is the projection order.) The
reduction of computation consists of two parts. One
concerns calculating the pre-filtering vector which
originally took O (p®) operations. Our new algorithm
computes the pre-filtering vector recursively with about
15p operations. The other reduction is accomplished
by introducing an approximation vector of the estima-
tion filter. Update of the estimation filter, which takes
pL operations in the original algorithm, is replaced by
the update of the approximation vector, which takes
only L+3p operations. The estimated output of the
unknown system is calculated using the approximation
vector, the covariance vector, and the smoothing vector
with L+ p operations. Another p operations are
required to calculate the error vector. Experimental
results for speech input show that the Projection algor-
ithm approaches RLS as the projection order increases
while the calculation complexity remains as much as
that of NLMS. This result indicates the efficiency of
the proposed fast Projection algorithm because it
improves convergence speed with little extra calcula-
tion cost.
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