804

IEICE TRANS. FUNDAMENTALS, VOL.E80-A, NO.5 MAY 1997

| PAPER Special Section on Acoustical Inverse Problems |

Two-Channel Blind Deconvolution of Nonminimum

Phase FIR Systems

SUMMARY A new method is proposed for recovering an
unknown source signal, which is observed through two unknown
channels characterized by non-minimum phase FIR filters.
Conventional methods cannot estimate the non-minimum phase parts
and recover the source signal. Our method is based on computing the
eigenvector corresponding to the smallest eigenvalue of the input
correlation matrix and using the criterion with the multi-channel
inverse filtering theory. The impulse responses are estimated by
computing the eigenvector for all modeling orders. The optimum order
is searched for using the criterion and the most appropriate impulse
responses are estimated. Multi-channel inverse filtering with the
estimated impulse responses is used to recover the unknown source
signal. Computer simulation shows that our method can estimate non-
minimum phase impulse responses from two reverberant signals and
recover the source signal.

key words: blind deconvolution, nonminimum phase, inverse
filtering, impulse response, FIR filter

1. Introduction

When a speaker is some distance away from the microphone
in a teleconferencing situation, the speech signal is distorted
by room reverberation, so it is less intelligible to the
listeners. One way to achieve nearly perfect dereverberation
of speech is to perform inverse filtering using two
microphones [1]. This method requires the room impulse
responses of sound transmission channels to be known in
advance, but there has been no practical way to know the
impulse responses between the human mouth and
microphones.

A blind deconvolution method [2] based on
multichannel inverse filtering has been proposed for
estimating the impulse responses from the reverberant
signals and recovering the source signal. The most
significant problem with this method is that it is difficult to
determine the order of the impulse response filter model.
Wang {3] has proposed a criterion to determine the modeling
order for minimum phase impulse responses, but estimating
the impulse responses accurately is still difficult because
room impulse responses are usually nonminimum phase.

This paper therefore proposes an approach to
determining the order of the impulse response filter model
and estimating impulse responses that may be nonminimum
phase. This approach is based on a cost function that is
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minimized when the common zeros of the z-transforms of
the two observed signals are extracted. If there are no
common zeros between the system transfer functions of the
two unknown channels, the common zeros of the observed
signals represent the source signal and the noncommon
zeros represent the characteristics of the two channels. The
source signal can therefore be recovered by separating the
common zeros from the other zeros; that is, by minimizing
the cost function.

2. Principle

The proposed method consists of two stages, as shown in
Figs. 1(a) and 1(b). After the impulse responses are
estimated for various modeling orders, the optimum order is
determined. Source recovery is done using multichannel
inverse filters for the estimated impulse responses of the
optimum order.

2.1 Estimation of Impulse Responses

Consider sound picked up by two microphones in a room, as
shown in Fig. 1(a). Let x(n) represent the sound-source
signal, let m,(n) and m,(n) represent the signals received at
the two microphones, and let ¢,(n) and c,(n) represent the
impulse responses of the two acoustic paths. Signals m,(n)
and m,(n) pass through FIR filters A (n,i) and h (n,i),
respectively, where i represents the filter order. Note that
the subscripts of i ,(n,i) and h,(n,i) are reversed in Fig. 1(a).
One of the filtered signals is subtracted from the other to
generate error signal e (n,i) for order i.

Let’s assume that impulse responses c¢,(n) and c,(n)
can be modeled using FIR filters with order j and there are
no common zeroes in the z-transforms of ¢,(n) and c,(n).
Then

e (i) =m(n) * hy(ni) —m,(n) * h (n,i)
=x(n) * ¢, (n) * hy(n,i) — x(n) * c,(n) * h (n,0)
=x(n) * {c,(n) * hy(n,i) — c,(n) * h (n,D)},

(1)
where the symbol * represents convolution.
Ifi=j and e (n,i)=0for all nin (1), h (n,i)and h,(n,i)
satisfy
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h\(nj) =ac,(n)

hon,i) = a cy(n), (2)

where « is an arbitrary constant. Thus &,(n,i) and h,(n,i) can
be estimates of ¢ (n) and c¢,(n). However, since e (n,i) does
not reach zero exactly because of computation and
measurement errors, we compute k (n,i) and h,(n,i) that
minimize the mean squared value of e (n,). The mean
squared error E{e%(n,i)} is written as

E{ei(n)} = E{h"() m(i) m™(i) h(i)} 3)
=h'() R() k(i)

where k(i) is the filter coefficient vector:

h (0,0
ho(1,)

h. o(L,0)
—-h(0,0) [
—h (1,0

h(i) = 4)

~h (1,0

m(i) is the input signal vector:
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m,(n)
m (n-1)

”.ll(n_i)
my(n)
my(n-1)

m(i) =

, (5)
”.lz(n—i)

R() = E{m(i) m"(i)} is the input correlation matrix, and E{ }
represents expectation. The vector hA(/) minimizing
E{e3(n,i)} keeping the norm Ilh(i)ll constant can be derived
as the eigenvector corresponding to the smallest eigenvalue
of R(i).

2.2 Determination of Modeling Order and Source Recovery

The order of ¢,(n) and ¢,(n) is unknown. Thus, if order i is not
an appropriate value to model the impulse responses ¢ (n)
and c,(n), the h (n,i) and h,(n,i) calculated by (3) do not
satisfy (2).

First, a cost function is introduced to determine the
optimum value of order i using Fig. 1(b) . This cost function
is based on multichannel inverse filtering theory [3]. First,
the multichannel inverse filters g,(n,i) and g,(n,i) for A (n.i)
and h,(n,i) are derived by solving the following diophantine
equation:

G\(zDH (2.0) + Gy(2.DH (2,0 = 1, (6)

m(n)
s_w 1
+
cz(\n)‘

?—b e,(m)
oA

+
R

x(n,i)

+

Fig. 1 Two-channel blind deconvolution framework for non-minimum

phase impulse responses:

(a) estimating impulse responses for a given modeling order i;
(b) searching for optimum order and recovering source signal.



806

where G (z.0), G,(z,0)), H/(z,i), and H,(z,i) are the z-
transforms of g ,(n,i), g,(n,), h,(n,i) and h,(n,i). Then the
recovered source signal for order i is calculated using

X(nyiy=m (n) * g,(n,i) + my(n) * go(n.i) (7N

Now, the cost function PE(i) is defined as

. E{e,z,l(n,i)} E{e,z,z(n,i)}
PE() = , 8
O=Eimmw) * Elmim) ®
where
e, (n,i) =m(n) — X'(n,i) * h (n,i) ©)

epn(n,i) = my(n) — X'(n,i) * hy(n,).

This cost function evaluates how well the estimated impulse
responses k,(n,f) and h,(n,i) and the recovered source signal
x'(nj) approximate the actual reverberant signals
m,(n) = x(n) * ¢,(n) and m,(n) = x(n) * c,(n).

If and only if PE(i))=0; that is, e,(ni) =0 and
epn(ni) =0,

h(ni)=0wc(n)
hy(n,i) =0t cy(n) (10)
X(n,i) = 5 x(w),

where o is an arbitrary constant. The proof of (10) is given in
the Appendix.

Since we assume that there are no common zeros
between ¢,(n) and c,(n), the common zeros of the observed
signals m (n) and m,(n) represent the source signal x(n) and
the noncommon zeros represent the characteristics of the
channels ¢ (r) and c,(n). Thus the cost function PE(i) may be
considered to be minimized by extracting the common zeros
from the observed signals. If ¢,(n) and ¢,(n) have common
zeros, the zeros are extracted and c,(n) and c,(n) are
estimated as the remainders.

The optimum order [ of the estimated impulse
responses is determined by the following procedure:

(i) The filter coefficient vector k(i) is computed as the
eigenvector corresponding to the smallest eigenvalue of
R(i), then we have the estimates k (n,i) and h,(n,i) using (4).
(ii) The inverse filters g,(n,i) and g,(n,i) are computed
using (6).

(iii) The recovered signal x’(n,i) is computed using (7).

(iv) The cost function PE(i) is computed using (8).

(v) The above computations (i) - (iv) are done for various
values of order i. Then, the order that minimizes the cost
function PE(i) is selected as the optimum order /.

The estimated impulse responses h (n,/) and h,(n,l)
and the recovered source signal x’(n,/) with the optimum
order I are used as the final estimates.
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3. Computer Simulation

To confirm the validity of the proposed method, we
simulated two-channel blind deconvolution for
nonminimum phase impulse responses. The reverberant
signals were obtained by convolving the source signal with
the two nonminimum phase impulse responses c,(n) and
c,(n) shown in Fig. 3. The order of the impulse responses
was 30.

The optimum order was searched for from 3 to 50.
Figure 2 shows that the optimum order /, the one that
minimizes the cost function PE(i), is 28. Although this
optimum order differs from the original order 30, it is a valid
value because there was a two-tap delay at the head of the
impulse responses, as shown in Fig. 3, and the delay was
extracted as common zeros through the computation.

Figure 3 compares the original impulse responses with
the estimates containing the two-tap delay and shows that
the estimated impulse responses /,(n,i) and k,(n,i) are good
approximations of the original responses ¢ (r) and c,(n).

The result of deconvolution for an impulse source
signal is shown in Fig. 4, the reverberant signal m,(n)
(dashed line) is overlaid on the recovered source signal. The
reverberant part of the recovered signal is suppressed well,
which demonstrates that the proposed method can help
overcome reverberation problems.

3 minimum value —% ]
0 10 20 30 40
Order

Fig.2 Optimum order of the estimated impulse responses. The arrow
points to the minimum value at the optimum order.

Amplitude
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Sample number
Fig. 3 [Estimates (solid lines) and originals (dashed lines) of two
unknown impulse responses that are nonminimum phase.
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Amplitude

0 10 20

Sample number
Fig. 4 Result of deconvolution using the proposed method. The solid
line is the recovered signal of an impulse source and the dashed line is
the original impulse signal distorted by reverberation.

4. Conclusions

The method for blind deconvolution proposed here can
determine the order of the impulse response filter model and
estimate impulse responses which may be nonminimum
phase. The proposed method is based on a cost function that
is minimized when the common zeros of the z-transforms of
the two observed signals are extracted. Multichannel inverse
filtering with the estimated impulse responses of the
optimum order is used to recover the unknown source signal.
Computer simulation showed that this method can estimate
nonminimum phase impulse responses from two reverberant
signals and recover the source signal.
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Appendix

The z-transforms of e,,(n,i) and e,,(n,i) are written as

E,(zi)=M,(2) - X'(z,)H (z,i)
= C(2)X(2) - H (z,){G(2)C(2) + G,()C(2) } X(2)
={C\(2) - H(zD){G ()C (1) + Go()Cx(2)} } X(2)
E,x(z,0) = M,(z) — X' (z,)H (2,0
= C,(X(2) - Hy(z.){G ,(2)C (2) + G,(2)Cx(2) } X(2)
= {Cx(2) - Hy(z.){G(2)C,(2) + G(2)C(2)} } X(2),

(A-D

where M (z), M,(z), C,(z), Cx2), X(z), and X’(z,i) are the z-
transforms of m,(n), m,(n), ¢,(n), c,(n), x(n), and x’'(n,i). If
e,,(n,i)=0 and e,,(n,i) =0, then

0={C @) -H(z){G(2)C (D) + G,(2)CA2)} } X(2)
0= {Cy(2) - Hy(z.){G (DC(2) + G,(2)CAD)} } X(2).

(A2)

When (A-2) is satisfied for any source signal X(z), we have

C\(2) =H (z.){G(2)C\(2) + GA2)C,(2)}
C,(2) = Hz,){ G (2)C (2) + G()C(D)}.

Equations (A-3) indicate that G,(z)C,(z) + G,(2)Cy(2) is a
common term ofC(z) and C,(z). Since G (z,i), G,(z.0),
C,(2), and Cx(z) are the z-transforms of the FIR filters
8:(n,i), g,(n,i), ¢,(n), and ¢,(n), G,(2)C(2) + G,(2)Cy(2) isa
finite polynomial:

(A-3)

G(2)C\(2) + G(ICy(2) = B+ 2+ -+ +P2"+ - +f 2"
(A-4)

where B, is the coefficient of the kth order term of z.
However, since we assume that there is no common zero in
C\(2) and Cy(2), G(2)C\(2) + G,(2)C,(z) does not have
zeros. Thus B, is zero for all k except 3,.

G (2)C,(2) + G(2)C,(2) = B, (A'5)

Substituting (A-5) into (A-3), we have

HI(Z’i) = CI(Z)
A
Hy(z,)) = 0t C,(2), (A-6)

where « is 1/8,. The z-transform of the recovered source
signal x’(n,i) in (7) is written as
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X,(Z) = M|(Z)G](Z) + Mz(Z)Gz(Z)
=G (9)C()X(2) + G(CAD)X(2) (A7)
={G,(2)C(2) + G()C(2)} X(2).

Substituting (A-5) into (A-7), we have

X'(2)= B, X@@)

=1 (A$)
= X(2).

The inverse z-transforms of (A-6) and (A-8) are (10).
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