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Common-Acoustical-Pole and Residue Model
and Its Application to Spatial Interpolation and
Extrapolation of a Room Transfer Function

Yoichi HanedaMember, IEEE Yutaka KanedaMember, IEEE and Nobuhiko KitawakiMember, IEEE

Abstract—A method is proposed for modeling a room transfer be measured and modeled when the conventional all-zero or
function (RTF) by using common acoustical poles and their pole/zero model is used.
residues. The common acoustical poles correspond to the res- We therefore previously proposed an efficient modeling

onance frequencies (eigenfrequencies) of the room, so they are .
independent of the source and receiver positions. The residues Method called the common-acoustical-pole and zero (CAPZ)

correspond to the eigenfunctions of the room. Therefore, the Model for multiple RTF’s [8]. The common acoustical poles
residue, which is a function of the source and receiver posi- correspond to the resonance frequencies (eigenfrequencies) of

tions, can be expressed using simple analytical functions for the room. The zeros correspond to the time delay and anti-
rooms with a simple geometry such as rectangular. That is, yagonances. This model requires fewer variable parameters

the proposed model can describe RTF variations using simple .
residue functions. Based on the proposed common-acoustical-(Zeros) than the conventional all-zero and pole/zero models

pole and residue model, methods are also proposed for spatially 10 express the RTF’s, because the common acoustical poles
interpolating and extrapolating RTF’s. Because the common are common to all RTF’s in the room. However, even when
acoustical po!es are invarian_t in a given room, the interpolation the CAPZ model is used, because of the complex variations
or extrapolation of RTF's is reformulated as a problem of i, the zeros depending on the source and receiver positions,
interpolating or extrapolating residue values. The experimental the RTE has to b df - fi
results for a rectangular room, in which the residue values are e_ 'as. 0 be measured for gvery soqrce-recelver Con. Igu-
interpolated or extrapolated by using a cosine function or a linear ration. This is cumbersome. An interpolation or extrapolation
prediction method, demonstrate that unknown RTF’s can be well technique to estimate an unknown RTF at an arbitrary position
estimated at low frequencies from known (measured) RTF's by from known RTE’s would thus be very attractive.

using the proposed methods. A promising approach to interpolating or extrapolating an

Index Terms—Extrapolation, interpolation, modeling, poles, RTF would be to use a model that can express the RTF

residues, room transfer function. variations as simple functions. However, the conventional
model cannot do this. In this paper, we therefore propose
I. INTRODUCTION a new RTF model that uses the common acoustical poles

) ) . and their residues. In this model, the common acoustical

T HE ROOM transfer function (RTF), which describes thg o5 correspond to the eigenfrequencies of the room, so
sound transmission characteristics between a source g\ residues correspond to the eigenfunctions of the room.

a receiver in a room, plays a very important role in acoustigerefore, the proposed model can express the RTF varia-
signal processing and sound field control [1], [2]. For examplﬁons with simple analytical functions corresponding to the

an acoustic echo canceller uses the estimated RTF to remg}ffenfunctions for rooms with a simple geometry, such as

echo signals [3], [4], and an active noise controller uses inversegangular. Furthermore, because this model corresponds to

filtlers based on RTF's to reduce noise [5], [6]. Recently, @q narial fraction expansion of the CAPZ model [9], the
multiple-input, multiple-output sound control system has begpgjqe values can be obtained from the CAPZ-modeled RTF.
investigated for these applications. In such a system, muItipIeBased on the proposed common-acoustical-pole and residue
RTF:s between the sources and receivers are use_d. Becag.s?(gl\q;R) model, we also propose methods for interpolating and
RTF's strongly depend on the source and receiver pos't'()njé‘§trapol<';\ting the RTF at an arbitrary position from the known

[7], the RTF for every source-receiver configuration mugt,easyred) RTF's. In these methods, functions that describe

residue variations (residue functions) are estimated using sev-

. . , eral measured RTF’s. Then, we calculate the residue values for
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Section V, the proposed model is applied to the interpolatidhe physical poles are invariant. Tracking the pole and zero
and extrapolation of an RTF, and the results for a rectangulariations is difficult because they are not independent of
room, discussed in Section VI, show the advantage of teach other; for example, they cancel each other out in some

proposed methods. source-receiver configurations.
We previously proposed the common-acoustical-pole and
Il. CONVENTIONAL MODELS OF zero (CAPZ) model for RTF’s. The background of this model
THE ROOM TRANSFER FUNCTION is that the resonance frequencies and their damping fac-

. : : . tPrs 6; are independent of the source and receiver positions
In this section, we consider whether the conventional models . . )

X . as shown in (2). This model uses the common acoustical
can effectively model RTF variations caused by changes Ir(])Ies ; which correspond to the resonance frequencies and
the source and receiver positions. The typical RTF modelEs Pci P q

I

a conventional all-zero model (moving-average (MA) mode arrzp':]eigifézrzs-rhe CAPZ-modeled RTcapz(z, 15 To)
[1]. This model has coefficients corresponding to the truncated P

impulse response of the RTF; it represents the RTF with eithel[_I ( ) Coz @ HiQ—21[1 — qi(rs,ro)2 71 @
1C1 e . . ’ Z,¥syTo) = —
MA coefficientshaz(¢,rs,r,) OF Z€rosgaz;(rs, ro): CAPZ Hf:l(l ~poizL)
Q-1 . . .
Han(7,rer0) = Z hoan (i, T, T0) 7~ whereC is a gain constant. Comparison of (4) and (3) shows

that the position-dependent polesyz;(rs,r,) are replaced
0 by the position-independent poleg;. The zerosg;(rs,r,)
= Cagz @ H[l —gaz(rere)r Y Q) in (4) are generally.different from thQI.’Zi(rsaro) in (3).

The common acoustical poles;; are estimated as common
values for the RTF's measured at different source-receiver
where Haz(z, s, r,) represents the all-zero modeled REE, positions. Because only the zergs(rs,r.) depend on the
andr, represent the position vectors of the source and receivggyrce-receiver positions, this model needs fewer parameters
Caz is a gain constant, an@ = Q1 +Q»+1is the number of 4 express the RTF variations than the conventional all-zero
coefficients. Coefficientsz(¢, rs, ro ) represents the amplitudemodel or the pole/zero model (where the poles are estimated
of the direct or reflected sound at discrete timeneasured a5 different values for each RTF). However, it is still difficult

for the source-receiver positiorfss, r,). This model can be {5 express the zero variations as explicit functions.
interpreted as a geometrical expression of the RTF. However,

formulating the variations in the MA coefficients and the zeros m
is not easy because the number of reflected sounds is large;
i.e., the number of coefficient is large. In this section, we propose a new RTF model that uses

The RTF can be theoretically expressed by using the redge common acoustical poles and their residues to express

tions P;(r) of the room based on the wave equation [7] ~ Model is that a room transfer function can be expressed by
using the eigenfrequencies (resonance frequencies) and the

i Pi(r ) P;(ry)jw i i i
Hiwror) =G Y — (rs)Pi(ro)j () eigenfunctions as shown in (2).
=1

=0

=1

. COMMON-ACOUSTICAL-POLE AND RESIDUE MODEL

—w? — 2j6;w; + 62 We consider a new RTF model in a discrete time system by
referring to (2). Resonance frequencigsand their damping
wherew is the angular frequency; is the damping constanttaciors 5, are represented by the common acoustical poles
(corresponding to thé&-factor), andC; is the gain constant. pci, as in the CAPZ model. Because (2) is a partial fraction
The parameters); and é; are independent of the source ang@ypansion for the resonance frequencies, our proposed model

receiver positions; their values are determined by the rogtgn pe represented byzatransform with common acoustical
size, wall reflection coefficients, and room shape. poles pe;:

Because the RTF can be represented by a rational expres-
sion, as shown in (2), it can be modeled by the conven-
tional pole/zero model [10], [11] and represented with poles H(z 15, 1r0) = Z

przi(rs, o) and zerosgpz;(rs, ro): =1
Oy 7@ . where P is the number of poles in the objective frequency
Crzz % [[;Z1[1 = qrzi(rs, ro)2™] (3) band, and functionA;(r,,r,) is a residue function. The
[T .11 — prai(rs,ro)z 1] superscript* denotes the complex conjugate. In this model,
I__the common acoustical poles; and their residues!;(rs,r,)
: . ; . dre generally complex numbers. We call the expression in
P is the order of the poles, andpyz is a gain constant. This . :
model needs fewer parameters than the all-zero model.(m the CAPR model. Although this quel does n_ot_stnctly_
the pole/zero model, both the polegy;(rs,r.) and zeros _corresponq to (2), we shovy the apprpxmated _deV|at|on of it
‘ i s n Appendix. From Appendix, the residue functieh(rs,r,)
grzi(rs,r,) are estimated so as to minimize the square be expressed using eigenfunctian and P as
error between the measured RTF and the modeled RTFal ¢ €*P g €9 ) (o)
every source and receiver position. They are thus estimated as Ai(ra,ro) = % CoiPy(rs) Pi(ro) )

different values for every source and receiver position although

P/2
41i IS?IO ‘17‘ I5710

5
1—peiz™t  1—pei*z~t ®)

HPZ(Zarsa ro) =

where Hpz(z,rs,r,) represents the pole/zero modeled RT
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whereC; is a constant. We verified the validity of this model Iy
by the experiments discussed in the next section.

Because this proposed model corresponds to the partia
fraction expansion of the CAPZ model in (4), the specific 1.8m 30m
residue valued;(rs,r,) for the i-th common acoustical pole 0000000000000000
pc; at the source and receiver positiofss,r,) can be 12, . .16
calculated using Receiver positions

1.1m

1.8m

£
©
<+
(7) 13m

F=Pai D:] Source
Since the residue variations due to changes in the source E
and receiver positions are characterized by the eigenfunction = X
of the room, as shown in (6), this model can express the 0
RTF variations by using the expressions of the eigenfunctions. 6.6m

Although the eigenfunctions depend on the physical charactei. 1. Arrangement of source and receivers. The height of the room was
istics of the room, formulating the residue variations is eagy! M. and the reverberation time was about 0.5 s.

when the eigenfunctions are well understood as is the case for )

a rectangular room. Thus, in the following section, we discu§¥Ceptin, (), can be treated as constants, the residy@)

the residue variations of our CAPR model in a rectangul§Pn P€ expressed as

Coz= 9 T9 1 — ga(rs, 1)z ]

Ai s, I'p) =
(s xe) HZ;1<1—pcnzfl>

room. Ai(z) = C3: P, (2) = Cys exp(—jkiz) + Cs; exp(kix).
(12)
IV. RESIDUE VARIATIONS IN A RECTANGULAR ROOM The wave numbe¥; (=k, ) of residueA;(z) is a wave
number of ther-axis. The wave numbéip; (corresponding to
A. Theoretical Residue Variations the resonance frequency) of the common acoustical peles

For a rectangular room, the eigenfunctiby(re) (¢ = s, 0) is a three-dimensional (3-D) space wave number. Therefore,
can be decomposed into three eigenfunctions corresponding¢nd kp; are usually different. The relationship betweken
the z-, y-, and z-axes [7] as follows: and kp; is

kpi = (2 + k2 +k2 Y2 13
P(re) = Pus(@0)Poy (0e)Po. () (€ =50)  (8) v = [k, ] 43
) ) ) Moreover, several sets dfn,,n,,n.) can occasionally
wheren., n,, andn. are integers representing the index ofatisfy onekp;. That is, when the resonance frequencies
each eigenfunction, andcorresponds to a set 0h.,ny,7=). degenerate, several wave numbgsscan correspond to one
The eigenfunction along the-axis (v = z,y, z) is expressed 3.p space wave numbéip,;.
as Based on [7], the residud;(x) of (12) is a cosine func-
, . tion whose amplitude initially decreases away from the wall
P, =C —jk D jk 9 ; - . -
(1) T eXp( J "“uf) +Pn eXp(‘] "“uf) © boundary. By assuming the acoustic absorption coeffieignt
whereC,, andD,, are constants, ank, is a wave number is small, we can treat the wave numbgras a real number.

expressed as In this case, the residue functiot;(z) can be expressed as
- a simple cosine function
knu = . + J7u (nu =0,1,2,-- ) (10) A; (.’L’) - B, COS(]CZ‘.T) (14)

whereL, is the dimension along the-axis of the room, and Where the constan, is a complex number and = 0
. corresponds to the acoustic absorption coefficient of tf@responds to the wall boundary of the room. The residue

walls. Based on (6) and (8), the residdg(r., r,) is expressed variation can thus be expressed as an explicit function, while
as o the zero variations in the conventional common-acoustical-

pole and zero model cannot.
Ai(rsa ro)

= %C%in () Pra, (Us) Pra. (25) Poy (%0) Pr, (Yo) Pr. (70). B. Experimental Results
(11) In practice, the residue values are calculated from measured
RTF's. We calculated the residue values in a rectangular room
For simplicity, we consider the residue variation when thigased on our proposed CAPR modeling method to investigate
source locationr, is fixed and the receiver position, is the relationship between their variations and the theoretical
moved parallel to the:-axis. In this caser, is a function of residue variations. The room was6 m (w) x 4.3 m (d) x
only z; i.e., residueA;(rs,r,) can be represented by;(xz). 3.1 m (h) with a reverberation time of 0.5 s. The source
Wave numbet,, is replaced byk; to allow use of the same location was fixed, and 16 receivers were set parallel to the
index (i) of A;(z). Because all of the other eigenfunctionsz-axis at intervals of 20 cm (Fig. 1). In Fig. 1, the origin is
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Fig. 2. Example of a measured impulse response.

107 Hz

Both observed residue values varied as a cosine-like function
corresponding to (14). They were symmetrical in absolute
amplitude with respect to the center of the room (the point
between receiver positions 8 and 9). The residue variation
for the resonance frequency of 107 Hz corresponds to the
(4,0,0) mode. Although several modes degenerate at a res-
onance frequency of 179 Hz, the observed residue variation
corresponds to thés,n,,n.) mode. That is, even if the
poles degenerate, the residue variations can be obtained at one
particular mode (a particular function). When the resonance
frequencies degenerate, the correspondence between a particu-
lar observed function and the theoretical eigenfunction requires
further analysis. Nevertheless, these experimental results show
that our proposed CAPR modeling method can express RTF

o 10— - : — variations as simple residue variations corresponding to the
e -7 Tl 3 . .
= E\\ /ﬁ eigenfunctions.
= 00F Py P
Q. - ~ T
£ B T T S
< qo0f E
12345678 910111213141516 V. PRINCIPLE OF INTERPOLATION
Receiver position AND EXTRAPOLATION OF RTF'’s
a .
‘o ,( )‘ o 178He Because the common acoustical poles do not depend on
8 T ; the source and receiver positions, the RTF variations can be
S 00 - \\;,, e expressed by the residue variations in our proposed model.
£ ; O§ T i Therefore, interpolating or extrapolating the RTF can be refor-

mulated as a problem of interpolating or extrapolating residue
functions. That is, it becomes a problem of estimating the
(o) residue functions.
Fig. 3. Residue variations due to changes in receiver position for resonance\Ne will discuss interpolation and extrapolation assuming a
frequencies of (a) 107 and (b) 179 Hz. The solid and dashed lines indica@ctangular room, because the eigenfunctions of a rectangular
the real and imaginary parts of the residues, respectively. room are well understood. For such a room, we need to
estimate only the parameters of the eigenfunction. Although
at the lower left corner. We numbered the receiver positioRse room shape is simple, it provides a good approximation for
from 1 to 16 starting at the end nearest to the source. Tﬁ%ny rooms, especially at low frequencies. Also, we assume
middle point between receiver positions 8 and 9 correspongig the source location is fixed and the receiver moves parallel

to the center of the room along theaxis. We measured the 16tg thes-axis which simplifies the residue variation as discussed
impulse responses by using a maximum-length sequence wihsection V.

a period of 16 383. A loudspeaker with a diameter of 16 cm, anThe proposed interpolation method is outlined in Fig. 4. In
omnidirection microphone, and 16-b A/D and D/A convertengis figure, the impu|se responmxIN) at receiver position
were used for the measurements. The frequency range Was is interpolated by using, as an example, the four impulse
limited to a low range (80 to 200 Hz), where there are n@ésponse () to h(z,) measured ak; to x4. The number
so many resonance frequencies, to avoid a high computatiopflmpulse responses is required to exceed the number of pa-
load. The sampling frequency was set to 500 Hz. The averageneters in the residue functions. First, the common acoustical
signal-to-noise ratio (SNR) of the measured impulse respongesesp; are estimated from the measured impulse responses.
was over 40 dB [12]. Fig. 2 shows an example of a measurRiéxt, each RTF is CAPZ modeled by using the estimated
impulse response. polespc;. The residue valued;(z,,) (i = 1,2,---,P;m =

First, we estimated the common acoustical poles from the2 3,4) are calculated using the partial fraction expansion
measured impulse responses at seven positions: 1, 2, 3, 110f2the CAPZ-modeled RTF's as shown in (7). Then the
13, and 14. The number of estimated poles was 60 based ongheameters of the residue functions are determined based on
number of resonance frequencies and their degeneration [1Bg calculated residue valugs(x,,,) at the four positions. The
Next, we estimated the zeros in each of the 16 RTF's by usingsidue functionfli(x) is thus expressed by this parametric
the estimated common acoustical poles. That is, we obtaineddel. Residue valuefli(xm) at receiver positionzryy is
sixteen CAPZ-modeled RTF’s. The number of zeros was tealculated by evaluating the estimated residue functipf)
same as the number of poles. Then, the residue values in elichz = z1y. These steps are repeated for all(i =
RTF were calculated using the partial fraction expansion f2,---, P). Finally, using all of the estimated residue values
those CAPZ-modeled RTF's. A;(zy) (1 = 1,2,---, P) and the common acoustical poles

Examples of the residue variations, for resonance frequers; (¢ = 1,2,---,P), we obtain the interpolated impulse
cies of 107 and 179 Hz, are shown in Fig. 3(a) and (br)esponséAl(a:IN) at zy. Extrapolation of the RTF can be done
respectively, with the residue values plotted continuouslin a similar manner.

1234567 8 910111213141516
Receiver position
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h(x,)

[ Estimate Common Acoustical Poles p; (CAPs) )
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The wave number of 3-D spadg; can be calculated based
on the estimated common acoustical pole. However, the wave
number for each axis cannot be estimated from the wave
number of 3-D spacép; because the room size is unknown.

v 3 i v . e )
[ 1-¢,0c)z )| [I-g0)71 ] capy [T g ez 1] T 1-g,(x)7] Thli\t is, the Wav? nLirrF]beki_tfpr (;cr;fe x;?i(lsdmt (17) is ﬁnth
Tz || D0-pez) | model | Ti(1pezD) || T(i-pez?) unknown parameter. Thus, it is difficult to determine all the
. parameters in (17) at the same time. Therefore, by setting
AJ' ‘LA CAPR 7 ,_i i values from 0 Hz up to the maximum objective frequency at
5 Aix) Y i(mv model | % i('\f] ) i) intervals of 1 Hz for the wave numbés, we can determine
i1-pes! i I-pez Pt Fl-pes! the optimum set of wave numbeks and the other parameters
v * : : * as follows.
Interpolate residue value

First, the wave numbe; is set to one value from among the

A A Ao Adr) A0 objective frequencies. Then, because,, is already known,
. the values ofos(k; Ax,,) andsin(k;Ax,,) can be obtained.
Ao - That leaves onlyB,; cos(k;z1), —Ba,l_sin(kiarl), andB,, as
i 1-pezt | unknown parameters. By representing these three parameters
as 31, 32, and 33, we can describe the relationship between
Fig. 4. In this example, RTP(zy) is estimated from RTF'sh(z;) the M actual &observed) residues and these parameters as

to h(x4) by using the proposed interpolation method. First, the common
acoustical poleg; are estimated from RTF'h(z;) to h(x4). The actual
residue values afi;(z,, ) are obtained by using the partial fraction expansion
of the CAPZ-modeled RTF's (CAPR modeling). The residue valdigsrin )

(¢ = 1,2,---, P) at receiver positiontyy are estimated using the actual
residue values ofd;(xy) (i = 1.,2,--;,]7; m = 1,2,3.4) and an
interpolation method. The impulse respoidgern ) at receiver positiorry

is obtairJed based on the common acoustical pptesand estimated residue
values 4; (21x).

COS(/%‘Z‘A.Tl) Sill(kiAJ}l) 1
cos(k;Azs)  sin(k;Azy) 1

Ayi (x1)
oy (6
A :
’ Ayi(wnm)
(18)

cos(k;Azpr) sin(k;Azpy) 1

This is an overdetermined matrix equation. By writing it as

As shown in the previous section, the residue variationy B = A, Ieast-square_slsolunons foh, 52, and 3 can be
are cosine-like functions in a rectangular room. ThereforgalculatedB = (W"'W)™ "W A. The squared error between
we propose using a simple cosine function or a linear préle actual residue valued.;(z,) and the residue values
diction method to estimate the residue values at the targti(zm) calculated byWB using the least-squares solutions
position. The details of these parameter estimation methd8sexpressed as

are explained below.

A. Residue Function Estimation as a Cosine Function

When the acoustic absorption coefficients of the walls a8 nai - L
Changing the value of wave numbégy within the objective
small, wave numbek; can be treated as a real number. In thi

case, the real and imaginary parts of the residue functions

be approximated by cosine functions

M

ey (ki) = Z [Avyi(zm) — A“/i(xm)]Q-

m=1

(19)

Frequencies;B = [f1, B2, B3], and their squared errer, (k;)

can

are calculated for each wave numbgr The optimum set of

parameter8Pt andk°?" is determined so as to minimize the
squared error (19). Finally, the approximated residue function

/AL(.I) = ARei(a:) +j12hmi($) is given as

Ai(x) = By cos(kix) + Boya

(15)

(v =Re,Im). (16)

The real and imaginary parts of the residue function areA”(xloJl;Ax) o bt 1 opt o
assumed to be independent, aBdg, is used to remove any =/ COS(’%‘, Ax) + 552 Sm(’w Ax) + s -
bias components. o

We consider the determination of the parameters of cosihBese steps are repeated forafl = 1,2, -
function A,;(z) in (16) based on the residue valuds;(x,,)
(m = 1,2,---,M) observed atM receiver positions. We B. Residue Value Estimation Based on
assume that the relative positiaxz,,, from the first receiver a Linear Prediction Method

position «; is known for each receiver position, buti  The inear prediction method [14] corresponds to approx-
is unknown. Moreover, we assume that the room size jiating the residue function as an exponentially increas-
unknown. Because,, = x1+ Az, the approximated residuejng/decreasing cosine function. Therefore, this method can
function can be represented as approximate the residue variations better than the simple co-
sine function approximation. However, the impulse responses
should be measured at equal intervals.
When the receivers are set at intervalsof we assume

that the real and imaginary part of the residue at position

(20)

,P).

fla,i(xm) = B, cos[ki(x1 + Axy)] + By
= B, cos(k;z1) cos(k;Axy,)

— By sin(k;z1) sin(k; Azy,) + Byo. (17)
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Tm = Zo +mA can be expressed by using those of positions 107 Hz
Tm—1 =20+ (m—1DA andz,, 2 = xo+ (m — 2)A: 2 10 ;\iﬂagin;(/—““\ ]
] 3
A A A £ oof N ><
A'yi(-/rrn) = a'yl A’yi (-Trn—l) + a'yQA'yi(-Trn—Q)- (21) E’ ;///real \:\\\::C_‘:S;/// ,;
This equation is equivalent to the linear prediction equation 23 4 5 6 7 8 9 10111213 14
in the time domain with prediction coefficients,; and cv.». Receiver position
The matrix formulation of (21) forn = 3,4,---, M is
1.0
Avi(z2) Avi(z1) Ayi(zs) g real
A,yi(.’ljg) A,\/Z‘(.TQ) R Aa,i(a:4) %_ 0.0 7/_/'/’//‘
. . v = . IS imaginary
: : o : AR 8 9 10 11 12 13 14
123 4586 7
Avienm-1)  Avi(wn—2) Ayi(znm) Receiver position
(22) known (b) W

When this matrix equation is written &/B = A, the Fig. 5. Examples of actual residue variations and estimated residue functions

least-squares solutions can again be obtained by calcuIatfl‘f’feg'eso”ancf3 frequencies of (a) 107 and (b) 179 Hz. The solid lines indicate
he’real and imaginary parts of the actual residue variations. The dashed lines

B = (W W)"'W"A, as in the previous method. By usinGngicate the real and imaginary parts of the estimated residue functions. The
the determinedx,; and a, and the knownA.;(x,;) and estimated residue functions were estimated from the actual residue values at
Am‘(xM—l), the residue valuesiwi(a:) (a: =ay + A,z + receiver positions 1, 2, 3, 11, 12, 13, and 14.

2A,---) can be estimated recursively.

Comparing these two methods, the cosine function apprdr- these figures, the actual residue variations were obtained
imation can be used for unequal intervals between receiay continuously plotting the actual residue valudg(z,,)
positions and for both interpolation and extrapolation, althougpalculated from the RTF’'s measured at all receiver positions
it ignores the damping effect. In contrast, the linear prediction2,---, and 14. The estimated residue functions (dashed
method requires that the receiver positions be set at eqliags) agree closely with the actual residue variations (solid
intervals. Moreover, when there are few measured RTF's,liites).
can only be used for extrapolation. Nevertheless, it enables\Next, we interpolated the RTF at receiver position 7 by
increases or decreases in the amplitude of the residue functising the estimated residue functioAs(x) and the common
to be expressed, and it requires fewer operations to estima¢@ustical polesc;. This corresponds to interpolating the
the parameters than does the cosine function approximatioRTF at receiver position 7 by using the RTF's at receiver

positions 1, 2, 3, 11, 12, 13, and 14. Fig. 6(a) and (b) shows the

VI. INTERPOLATION AND EXTRAPOLATION EXPERIMENTS frequency responses of the actual RTF, the RTF interpolated

using the proposed method, and the RTF interpolated using the

, X , onventional linear interpolation method. Although receiver
measured RTF's by using our proposed methods. The impu, ition 7 was 80 cm from both positions 3 and 11, the

responses used for these experiments were the same as t interpolated using our proposed method agreed well

described in Section IV. To ev_aluqte the effeptlveness Of_o\'ﬂ/'ith the actual RTF. In contrast, the RTF interpolated by the
method, we compared the estimation error with that obtainggy,, entional linear interpolation method using complex values
using conventlonallmeth.ods. A Ilngar mterpolauqn method WP the RTF's at receiver positions 3 and 11 had large errors.
used. as a convgnuonal mterpolgnon method. Since there is NQy 4150 compared the actual RTF and interpolated RTF in
specific conventional extra_polatlon method, we used the RIfe time domain. The impulse response of our interpolated
of the nearest known position as a conventional method f8 = \vas derived from the inversetransform of (5). As
comparison. shown in Fig. 7(a) and (b), the impulse responses of the RTF
) interpolated using the proposed method also agreed closely
A. Interpolation with that of the actual RTF. To show the effectiveness of
First, we estimated the residue functidn(x) by using the our method, the impulse responses of the actual RTF’s at
seven actual residue values(z,,) (m = 1,2,3,11,12,13, receiver positions 3 and 11, and the impulse responses of the
and 14) for eachi (i = 0,1,---,59). The actual residue RTF’s at receiver position 7, which were interpolated by using
values A;(x,,) and the common acoustical polgs; were the conventional interpolation method from the RTF's at the
calculated based on the proposed CAPR modeling meth@geiver position 3 and 11 are shown in Fig. 7(c), (d), and (e).
from the measured RTF’s. Here, the number of commonNext, we investigated the relationship between the interpo-
acoustical poles was set to 60. The residue funcfigir) was lation distance and the time domain estimation error. Here,
approximated as a simple cosine function, and the parametié interpolation distance is the distance between the position
of the approximated residue function were estimated using tbethe interpolated RTF and the nearest receiver among the

We interpolated and extrapolated unknown RTF's fro

method described in the previous section. known RTF’'s. The error power was defined as
Examples of the estimated residue functi and actual - >
g vors) SEZd ) — )2

residue variations4;(z,,) corresponding to pole frequencies Error Power= 101log,,

o (dB) (23)
of 107 and 179 Hz are shown in Fig. 5(a) and (b), respectively. Y=o h?(n)
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Fig. 9. Frequency responses of actual (solid line) and extrapolated (dashed
line) RTF’s at receiver position 9 using the linear prediction method.

RTF's with better accuracy than did the conventional linear
interpolation method.

B. Extrapolation

We estimated the RTF's at receiver positions 8 to 12 by
using the RTF’s at positions 1 to 7. Two approximate residue
functions [a cosine function (16) and a linear prediction
method (21)] were used to extrapolate the RTF's.

First, we estimated the common acoustical poles by using
the seven known RTF'’s, then we calculated the residue values
at receiver positions 1 to 7. The estimation conditions were
the same as for the interpolation. Next, the parameters of
the approximated residue functiok () were determined by
using the actual residue valugs(z,,) (i =0,1,---,59;m =
1,2,---,7) for each method: the cosine function approxima-

Fig. 7. Impulse responses of (a) an actual RTF at receiver position 7, ipn and the linear prediction method. Finally, we obtained
an RTF interpolated using the proposed method at receiver position 7,

an actual RTF at receiver position 3, (d) an actual RTF at receiver positiéfr;\)e extrapolated RTF'&(z,,) (m = 8,9,---,12) by using

11, and (e) an RTF interpolated using the conventional linear interpolatifi€ common acoustical poles; and estimated residue values
method at receiver position 7 from the RTF's at receiver positions 3 and 1}, (a;m) (m =8,9,---, 12)

Relative amplitude

Time (s)

Fig. 9 shows the frequency responses of the actual (solid)

. and extrapolated (dashed line) RTF’s at receiver position 9
where, h(n) is the actual impulse response andn) is (40 cm from receiver position 7) when the residues were

the impulse response of the interpolated RTF. We plottextrapolated using the linear prediction method. The peaks of
the error power against the interpolation distance (Fig. 8he extrapolated RTF agree well with those of the actual RTF.
For comparison, we also plotted the results for the linedhe large amplitude estimation error (the dip) at about 190 Hz
interpolation method. The proposed method interpolated thas caused by a misestimation of the residue function.
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The proposed common-acoustical-pole and residue model
thus provides a promising approach to interpolating and ex-
trapolating RTF's. Furthermore, we expect that our proposed
model can be applied to simulations of continuous RTF
variations caused by movement of the source.

Nearest

Cos. approx.

-101

Error power (dB)
(6]

APPENDIX

Linear predict.
APPROXIMATED DEVIATION METHOD OF THE CAPR MODEL

15+ . . .
Equation (2) can be rewritten in theplane (the Laplace
20 . transform domain) with the limitation of the frequency range
20 40 60 80 100 as
® © (0 an (12
Distance (cm) L/ Ai(rs,ro)  Ai(rs,1o)
IS . , . ,
(Receiver position) H, (8, I‘S,I‘O) = Z |: LALE + tAE o (24)
P §— 8; s+ s;

Fig. 10. Estimation error between actual and extrapolated impulse responses

at each receiver position. The extrapolations were done using a CoSfifere s — Jjw. s — Jdw: — &6:. and P/2 is the number

function, a linear prediction method, and the nearest RTF (i.e., the RTF aft Jw, i JWi 7 0y . /

receiver position 7). of resonance frequenme; in the objgcuve frequency'band.
From (2) and (24), functiond;(rs,r,) is expressed using

_ eigenfunctionsP;(r;) and P;(r,) as
The error powers of the RTF's extrapolated using the
cosine function and linear prediction method at each receiver Ai(r,,10) = ECQiPi(rs)R‘(ro). (25)

position are shown in Fig. 10. The error power when the 2

nearest RTF (that is, the RTF measured at receiver positionThe poles in (24) correspond to the double-sided waveform
7) was used as the estimated RTF for all receiver positiopBsound pressure in the space domain. So, the transfer function

is shown for reference. These results show that the errors &iould be represented as a causal transfer function in the time
all extrapolation methods decreased as the distance increage@ain.

but both proposed methods had lower error power than wherNow, (24) can be rewritten as follows:
using the nearest RTF. To quantify the relationship between the /2
estimation error and the interpolation or extrapolation distance, B A;i(rs, o) Af(rg,r0) "

and the effective frequency range of the proposed method, WiIIHl(S’ s, To) = Z { - { } } (26)
need further investigation under various conditions.

s— 8 s — s

=1
By assumingd; < w;, the first term on the right side in (26)
contributes significantly fow =~ w;, and the second term does
VII. CONCLUSION so significantly forw ~ —w;. Therefore, the first and second

We have proposed using the common acoustical poles d8&Ms on the right side do not interfere yery*r(nucf)l with each
their residues to model the room transfer function. This modether, and can be treated separately. Sin¢e:=2=*]" and

s—s7
i

corresponds to the theoretical expression of the room trans[fe?(rs,fo)] have the same amplitude frequency response, the
function, which is based on the wave equation. The com- °~ " ,

mon acoustical poles correspond to the resonance frequen&feéeond term can be substituted
(eigenfrequencies) of the room; they are independent of the P2
source and receiver positions. The residues correspond to the B {Ai(rs,ro) Af(rg,ro)
. . ; (s,15,T0) = Z + . (27)
eigenfunctions in the room. Therefore, our proposed model
can express the RTF variations by using analytical residue
functions corresponding to the eigenfunctions for rooms withhis will guarantee that the transfer function is a causal and
a simple geometry, such as rectangular. real response in the time domain, and (24) and (27) have the
We also proposed methods for interpolating and extrapol&&me amplitude frequency response. The CAPR model can
ing RTF’s by using known (measured) RTF’s based on of€ derived byz-transforming (27) using an impulse invariant
proposed model. The residue variation can be approximaf@gthod [15].
as a cosine function or a linear prediction method in a
rectangular room when the source location is fixed and the ACKNOWLEDGMENT
receive_r moves parallel tol one axis. The parameters of thel’he authors are grateful to Y. Nishino, J. Kojima, and S.
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residues, which were calculated from the measured impulse
responses. The room transfer functions were then interpolated
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