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ABSTRACT 

We propose a new method of modeling a room transfer 
function (RTF) that uses common acoustical poles and their 
residues. The common acoustical poles correspond to the 
resonance frequencies (eigenvalues) of the room, and their 
residues are composed of the eigenfunctions of the source 
and receiver positions in the room. Because the common 
acoustical poles do not depend on the source and receiver 
positions, this model expresses the R'IF variations due to 
changes in the source and receiver positions by using residue 
variations. We also propose methods of interpolating and 
extrapolating RTFs based on the proposed common- 
acoustical-pole and residue model. Computer simulation 
demonstratedthat unknown RTFs can be well estimated from 
known (measured) RTFs by using these methods. 

1. INTRODUCTION 

The room transfer function (RTF), which describes the sound 
transmission characteristics between a source and a receiver 
in a room, plays a very important role in acoustic signal 
processing and sound field control. Because the RTF 
strongly depends on the source and receiver positions, it  
should be measured for every source-receiver configuration. 
However, this is cumbersome. An interpolation or 
extrapolation technique that could be used to estimate an 
unknown RTF at an arbitrary position using known RTFs 
would thus be very attractive. 

In our common-acoustical-pole and zero model of RTFs [I], 
the common acoustical poles correspond to the resonance 
frequencies of the room. They are estimated as values 
common to R'IFs for different source andreceiver positions. 
Because the common acoustical poles do not depend on the 
source and receiver positions, the RTF variations due to 
changes in the source andreceiver positions are expressed as 
variations in the zeros. Fewer parameters are thus needed to 
express the RTF variations than with the conventional all- 
zero model or the polelzero model (where poles are estimated 
as different values for each RTF). However, finding the 
explicit relationship between the variations in the zeros and 
the change in the source and receiver positions is difficult. 

In this paper, we propose a new model of RTFs that uses the 
common acoustical poles and their residues to efficiently 
express the Rl'F variations due to changes in source and 

receiver positions. Because the common acoustical poles are 
fixed values for all RTFs, only the variations in the residues 
are used for expressing the RTF variations. The residues are 
composed of the eigenfunctions of the source and receiver 
positions in the physical expression of the RTF 121. 

We also propose methods for interpolating and 
extrapolating the R'IF at an arbitrary position by using the 
common acoustical poles and their residues. Because the 
residue variations due to changes in the source and receiver 
positions have a regularity that follows the eigenfunctions 
of the room, we can estimate the residue variations as 
explicit functions of the positions from known RTFs. 

2. COMMON-ACOUSTICAL-POLE AND 
RESIDUE MODEL 

The room transfer function H(Q& rs, ro) between the source 
and receiver positions is expressed using resonance 
frequencies W, (eigenvalues) and their eigenfunctions P,@) 
121: 

where w is a frequency, 6, is a damping constant, and C, is a 
gain constant. The r, and r, represent the position vectors of 
the source and receiver, respectively. 

Under a discrete time system, the RTF can be represented by 
a z-transform: 

where pais a function of q and 6, but not of r, and r,. Because 
p a  does not depend on r, and r,, it  is common to all RTFs in 
the room (i.e., it is a common acoustical pole). P is the 
number of poles in the objective frequency band. Function 
A,@,, r,,) is aresiduefunction andis expressedusing P,(r,) and 

as 

Because (2) uses the common acoustical poles and their 



residues, we call it  the common-acoustical-pole and residue 
model. 

?he actual residue values can be calculated based on the 
common-acoustical-pole and zero model [ l ]  because the 
common-acoustical-pole and residue model ( 2 )  corresponds 
to the partial fraction expansion [3] of the common- 
acoustical-pole and zero model: 

Q2 

C ~ - Q I ~  (1 - ql(rs, r P )  

n (1 - Pc 2) 
(4) 

F 1  H(z, r,, r,) = 

F1 

where qir,, rp) is zero and C, is a constant. First, the 
common acoustical poles are estimatedfrom the RTFs for 
different source andreceiver positions as values common to 
the RTFs [l]. Next, the R V s  are modeled by the common- 
acoustical-pole and zero model (4). The actual value of the 
residue A,@,, r,) can then be obtained by the following 
equation: 

where L,, is the dimension along the u-axis of the room and 1: 
corresponds to the acoustic absorption coefficient of the 
walls . 

By determining parameters Cu,, Cuz, and k,, we can obtain 
residue A,@%, r,) at arbitrary positions (Is, rJ. The 
determination can be done by using a fitting method using 
the actual residues of several measured RTFs, for example, 
the least-squares method. 

Let's now consider the case when the source location is fixed 
and the receiver moves parallel to one axis. For this case, 
the change in the residue depends only on the eigenfunction 
of Pu,(u): 

A X U )  = c,P,,(u) = C,,~XP ( - j k u z u )  +C,FXP ( I ~ , , u )  (9) 

where U represents a receiver position along the U-axis. Thus, 
the residue variation can be expressed by an explicit 
function while the zeros of the conventional common- 
acoustical-pole and zero model cannot. 

Estimating the parameters in (9) is not easy because 
eigenvalue k,, is a complex value. Therefore, in this paper we 
approximate residue function A,&) as follows. 

A. Cosine function approximation of residue 
function 3. PRINCIPLE OF INTERPOLATION AND 

EXTRAPOLATION OF RTF 

Because common acoustical pole p a  does not depend on the 
source and receiver positions in the proposed model, the 
RTF H(z, rs, ro) variations can be expressed by the 
variations in residue Air,, 1,) in (2). Therefore, interpolation 
or extrapolation of the RTF at an arbitrary position can be 
reformulated as a problem of interpolating or extrapolating 
residue functions Air,, r,j. Here, we will discuss this 
interpolation and extrapolation assuming a rectangular room 
because the eigenfimction of a rectangular room is well 
understood. 

For a rectangular room, eigenfunction PirS (k=s, 0) can be 
decomposed into three eigenfunctions of axes [Z]: 

Pb$ = P,(x$y6@'z(Z\> , where k=s, o ~ ( 6 )  

In addition, the eigenfunction of the U-axis (u=x, y ,  z) can be 
expressed as 

P h g )  = C,PA -jk,u$ +c,,+xP(ik,q) , (7) 

If the acoustic absorption coefficient of the walls is small, 
so that eigenvalue k,, can be treated as a real number, the 
residue function can be approximated as a simple cosine 
function: 

&(U) =B, COS (kuu + 4) + B 2  . (10) 

In this cosine function approximation, two complex 
parameters (Bl ,  B,) and two real parameters (ku, $J) are 
determined. 

B. AR model approximation of residue 
function 

Acosine wave form whose amplitude decreases or increases 
with time can be predicted by using a second-order AR 
model[4]. Therefore, residue function 4(u) can be 
approximated using the second-order AR model: 

&(U) =DIAt{u- A) +Da1{u- ZA) , (11) 

where C,, and C,, are constants, and k, is an eigenvalue 
expressed as 

where Dl and D2 are the AR Parameters, and A is the 
microphone interval. In the AR model approximation, the 
ARparameters (Dl and&) andthe initial conditions have to 
be determinedusing the actual residues of the RTFs observed 



at equal-interval receiver positions. This AR model 
approximation does not disregardthe amplitude variation as 
does the cosine function approximation. 

4. INTERPOLATION AND 
EXTRAPOLATION SIMULATION 

We used computer simulation to compare the performance of 
our methods for interpolating and extrapolating RTFs at 
arbitrary positions with conventional methods. 
Conventional interpolation estimates an RTF by linearly 
averaging two known RTFs. There is no specific 
conventional extrapolation method, but one way is to 
simply use the nearest known RTF as the estimated RTF. 

We assumed a small rectangular room (2.3 x 1.3 x 1 . 1  m), 
about as large as the interior of a car. Room impulse 
responses were created using the image method [5], 
assuming the room hada wall-reflection coefficient of 0.93. 
The sampling frequency was 800 Hz, and the frequency range 
was 50 - 320 Hz. The order of the poles was set to 60. Figure 
1 shows the arrangement of the source and receivers. The 
receiver positions were set at 16 points parallel to the x axis 
at intervals of 10 cm. 
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and0 indicate the real and imaginary residues, respectively, 
used for the estimation. The estimated residue function 
agrees closely with the actual residues. 
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Fig. 2 .  Actual residues (solidline) and estimated residues 
(dashedline) for pole frequencies of (a) 221 Hz and (b) 270 
Hz. 
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Fig. 3 Frequency responses of actual RTF (solid line) and 
RTFs interpolated by the proposedmethod (dashedline) and 
by conventional linear interpolation (dotted line). 
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Fig. 1 .  Arrangement of source and receivers. 

4.1. Interpolation result 

The RTF at receiver position 7 was interpolated by using the 
cosine function approximation and the RTFs at receiver 
positions 1,  2, 3, 11 ,  12, 13, and 14. These RTFs were 
common-acoustical-pole and zero one modeled by the 
methodin reference [l]. The common acoustical poles were 
calculatedfrom these seven known RTFs. The residue values 
A,@,) (is, 1,  ..., 59; j=1, 2, 3, 1 1 ,  12, 13, and 14) were 
calculatedusing the partial fraction expansion in (5),  and the 
parameters in the approximated residue function &(U) in 

(10) were estimated using the minimum mean-square-error 
method. 

Figure 2 shows examples of the estimated residue function 
A&) (dashed line) corresponding to pole freqwncies of (a) 

221 Hz and (b) 270 Hz. The solid line indicates the actual 
residues A@)calculatedfrom the actual RTFs. The symbols A 
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Fig. 4 .  Impulse responses of actual RTF (solid line) and 
RTF interpolated using the proposed method (dashed line). 

Figure 3 shows the frequency responses of the actual RTF 
(solid line) and the RTFs interpolated by the proposed 
method (dashed line) and by conventional linear 
interpolation (dotted line). The RTF interpolated using our 
proposedmethodwas almost equal to the actual RTF (error of 
-1 8 a). The linearly interpolated RTF, the average of the 
RWs at positions 3 and 11,  hadlargeerrors at about 190 Hz 
and 270 Hz. 



As shown in Fig. 4, the RTF interpolated by the proposed 
method also agreed closely with the actual RTF in the time 
domain. 

4.2. Extrapolation result 

We extrapolatedthe RTFs at receiver positions 8 to 16 by 
using theRTFs at positions 1 to 7 shown in Fig. 1. The two 
approximatedresidue functions (cosine function (10) and AR 
model function (1 1)) were used to extrapolation the RTFs. 

Figure 5 shows an example of the frequency response of the 
actual RTF (solidline) andthe extrapolatedRTF (dashedline) 
at position 11 (40 cm from receiver position 7)  when the 
residues were extrapolated using the AR model 
approximation. The amplitude was well estimated at each 
peak position. 

Fig. 5 Frequency responses of actual RTF (solidline) andof 
extrapolated RTF (dashed line) at receiver position 1 1. 
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Fig . 6 .  Error between the actual RTF and extrapolated RTF 
for each receiver position. The extrapolations were done by 
approximating the residue function as a cosine function or as 
an AR model function, or by using the values of the RTF at 
receiver position 7.  

We defined extrapolation error E, as follows: 

where h(n) is the impulse response of the actual RTF, and 
Z(n) is the impulse response of the extrapolated RTF. 

Figure 6 shows the extrapolation errors for the cosine 
function approximation and the AR model approximation 
at each receiver position. The error when the RTF at receiver 
position 7 was used as the extrapolated RTF for all receiver 
positions is shown for the reference. These results show that 
both proposed extrapolation methods perform well. For 
example, the error for both methods was about -13 dB at 
receiver position 12 (50 cm from receiver position 7), while 
the error using the RTF at position 7 was 0 dB. 

5. CONCLUSION 
We have proposed a new method for modeling a room 
transfer function that uses the common acoustical poles and 
their residues. The common acoustical poles correspond to 
the resonance frequencies (eigenvalues), and their residues 
correspond to the eigenfunctions in the room. 

We have also proposed methods for interpolating and 
extrapolating RTFs by using known RTFs based on our 
proposed model. Simulation of these interpolation and 
extrapolation methods for a rectangular room showed that 
proposed interpolation performance was much better than 
conventional linear interpolation and that the proposed 
extrapolation method achieved higher accuracy than using 
the nearest known RTF. 
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