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Common Acoustical Pole and Zero 
Modeling of Room Transfer Functions 

Yoichi Haneda, Associate Member, IEEE, Shoji Makino, Member, IEEE, and Yutaka Kaneda, Member, IEEE 

Abstruct-A new model for a room transfer function (RTF) 
by using common acoustical poles that correspond to resonance 
properties of a room is proposed. These poles are estimated as the 
common values of many RTF’s corresponding to different source 
and receiver positions. Since there is one-to-one correspondence 
between poles and AR coefficients, these poles are calculated 
as common AR coefficients by two methods: i) using the least 
squares method, assuming all the given multiple RTF’s have the 
same AR coefficients and ii) averaging each set of AR coefficients 
estimated from each RTF. The estimated poles agree well with 
the theoretical poles when estimated with the same order as the 
theoretical pole order. When estimated with a lower order than 
the theoretical pole order, the estimated poles correspond to the 
major resonance frequencies, which have high Q factors. Using 
the estimated common AR coefficients, the proposed method 
models the RTF’s with different MA coefficients. This model is 
called the common-acoustical-pole and zero (CAPZ) model, and 
it requires far fewer variable parameters to represent RTF’s than 
the conventional all-zero or polehero model. This model was used 
for an acoustic echo canceller at low frequencies, as one example. 
The acoustic echo canceller based on the proposed model requires 
half the variable parameters and converges 1.5 times faster than 
one based on the all-zero model, confirming the efficiency of the 
proposed model. 

I. INTRODUCTION 
ROOM transfer function (RTF) expresses the transmis- A sion characteristics of a sound between a source and 

a receiver in a room. Modeling RTF’s is a key technique 
for many applications that simulate RTF’s. For example, an 
acoustic echo canceller (AEC) has an adaptive filter based on 
an RTF model. Another example is a sound field simulator, 
which simulates the sound field of rooms. An efficient model 
is required that can represent the RTF with few parameters be- 
cause, as one example, the convergence speed of the adaptive 
filter depends on the number of parameters. An efficient model 
is also required to represent the many RTF’s corresponding to 
different source and receiver positions with fewer parameters 
because, as another example, an efficient model can store all 
the RTF data in a small memory space. 

The usual method of modeling an RTF is an all-zero model. 
The coefficients of this model correspond to the impulse 
response of the RTF in the time domain. The all-zero model 
can be implemented with an FIR filter. When the room has a 
long reverberation time, however, the all-zero model requires 
a large number of parameters to represent the RTF, i.e., many 
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FIR filter coefficients are required. For example, when the 
reverberation time of the RTF is 500 ms, the FIR filter needs 
4000 coefficients (8 kHz sampling) to represent the RTF with 
-60 dB accuracy. Furthermore, when the RTF varies due to, 
for example, changes in the source and receiver positions, all 
the parameters of the all-zero model change. These result in 
slow convergence in an acoustic echo canceller and require a 
large memory for a sound field simulator. 

A pole/zero model ( A R M  model) is also used as an 
RTF model [1]-[7]. From the physical point of view, poles 
represent resonances, and zeros represent time delays and anti- 
resonances. Because the poles can represent a long impulse 
response caused by resonances with fewer parameters than 
the zeros, the pole/zero model seems to match a physical room 
transfer function better than the all-zero model. In particular, 
a conventional pole/zero model has been studied to reduce 
the number of parameters. It has been reported that the order 
of the parameters of the pole/zero model is smaller than that 
of the all-zero model, especially at low frequencies [2], [3]. 
Schonle et al. reported that the pole/zero modeling of RTF’s 
by multirate systems reduces the computational complexity for 
a sound field simulator [7]. It is possible to construct sound 
field simulators with pole/zero modeling at low frequency 
bands and all-zero modeling at high frequency bands using 
the subband technique. 

In the conventional pole/zero model, however, both poles 
and zeros are estimated as variable parameters for the RTF 
variations, although acoustical (physical) poles which corre- 
spond to the resonance properties are invariant. Therefore, 
when the RTF changes, all the parameters of the pole/zero 
model also change, like in the conventional all-zero model. 

A possible solution to this problem would be to estimate 
parameters that remain constant despite RTF variations due to, 
for example, changes in the source and receiver positions or the 
movement of people and to use them when modeling RTF’s 
[8]-[Ill. In this paper, we propose a new pole/zero model 
that has constant poles and variable zeros. In this new model, 
we use the estimated acoustical poles of a room as common 
constant poles. Acoustical poles correspond to the resonances 
of a room, and they do not change even if the source and 
receiver positions change or people move. Because the order 
of the acoustical poles in a room is so small that all of the 
common acoustical poles can be estimated at low frequencies, 
the proposed model is especially effective at low frequencies. 
These poles are first estimated from multiple RTF’s. Then, 
the RTF’s are represented by constant poles and by different 
sets of zeros. In the proposed model, variations in the RTF 
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Fig. 1 .  RTF between a source and a receiver in a room. 

Room 

f(rt. z )  

f ( s ,  2 )  

Ftr3, z )  

f (rM I ,  2 )  

F h .  z) 

(b) 

Fig. 3. 
models: (a) All-zero model; (b) polehero model. 

Block diagram of multiple RTF modeling based on conventional 

Fig. 2 .  
( j  = 1. 2 : . . , M ) .  

RTF’s corresponding to different source and receiver positions rJ 

require far fewer variable parameters to represent them than 
the previous conventional pole/zero model. Therefore, this 
model can reduce the memory space needed to store the 
coefficients of many modeled RTF’s. 

This paper is organized as follows. Section I1 reviews the 
conventional modeling of the RTF’s. Section 111 proposes the 
common-acoustical-pole and zero model. We also propose two 
methods for estimating the common acoustical poles from mul- 
tiple RTF’s. The estimation results of common acoustical poles 
are discussed in Section IV. In Section V, the proposed model 
is applied to an AEC, and computer simulations demonstrate 
its advantages. 

11. CONVENTIONAL MODELS OF ROOM TRANSFER FUNCTIONS 

An RTF describes the sound transmission characteristics 
between a source and a receiver. When the source signal and 
the RTF are denoted by X ( z )  and H ( z ) ,  the output signal 
Y ( z )  of the receiver is expressed by 

Y ( z )  = H ( z ) X ( z ) ,  (1) 

as shown in Fig. 1. The RTF H ( z )  includes the characteristics 
of the direct sound and all reflected sounds in the room. 

Now, we consider the modeling of the multiple RTF’s 
H(rj, z )  ( j  = 1, .  . . , M )  shown in Fig. 2, where rj represent 
the source and receiver positions, and Y (rj , z )  represent the 
received signals at each receiver position of rj. Since the 
arrival times and the amplitudes of direct and reflected sounds 
are different for each rj, these RTF’s H(rj,z) are different 
from each other. 

A .  All-Zero Model 

The RTF can be modeled by the conventional all-zero 
model, which can be represented with either zeros yi(rj)’s 
or MA coefficients bi(rj)’s as 

Q2 Q 
Ei(rj> z )  = c z-Q1 n(1 - yi(rj) z-’) = x b i ( r j ) z - i ,  

i = l  i=O 
(2 )  

bi (.)I 
The MA coefficients correspond to the impulse response 

coefficients of the RTF. 
Fig. 3(a) illustrates the modeling of the RTF’s using the all- 

zero model. The boxes in Fig. 3(a) represent FIR filters with 
the coefficients b;(rj) (i = 0 , .  . . , Q; j ,= 1, .  . . M ) .  To model 
M RTF’s, i.e., H(rj, z )  (j = 1,.  . . M ) ,  the all-zero model 
requires M FIR filters, each of which has Q + 1 coefficients. 
Therefore, the total number of different coefficients needed to 
represent M RTF’s is M x (Q + 1). 

all-zero (MA) modeled RTF corresponding 

positions of the source and receiver, 

number of RTF’s, 
gain constant, 
order of zeros, (Q = Q1 + Qz), 
zero for each rj, 
MA coefficient for each ri. 

to each rj, 

j = 1 , 2 , . - . , M ,  

B .  Polelzero Model 
The RTF can be also modeled by the pole/zero model. This 

model is equivalent to the ARMA model. It can be represented 
with either poles pi(rj) and zeros qi(rj) or AR coefficients 
a;(rj)  and MA coefficients bi(rj) as 

(3) 

where 
H(rj, z )  

Q, Q1, Q2 order of zeros, (Q = Q1 + Q2), 
P order of poles, 
p;(rj) pole for each rj, 
a; (rj) 

The pole/zero model can be implemented with an IIR filter. 
Fig. 3(b) shows pole/zero modeling of RTF’s using IIR filters. 
The boxes in Fig. 3(b) represent recursive filter sections with 
the AR coefficients a;(rj) and nonrecursive (or FIR) filters 

pole/zero (ARMA) modeled RTF 
corresponding to each rj, 

AR coefficient for each rj. 
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Fig. 4. Standing wave in a I-D room. Since resonance can be observed at 
any source and receiver position except node points (such as point C), all 
the RTF’s have common acoustical poles that reflect the information of the 
resonance frequencies. The amplitudes are different at different points, e.g., 
A, B, and C. 

with the MA coefficients b;(rj). In the conventional pole/zero 
model, the poles and zeros, that is, the AR coefficients and 
the MA coefficients, are obtained for each RTF with rj. 
Therefore, all the AR and MA coefficients depend on rj, and 
the conventional pole/zero model requires M x (P + Q + 1) 
coefficients to represent M RTF’s, H(rj, z )  0 = 1,. . . M). 

Thus, all the parameters (coefficients) are dependent on 
rj (j = 1, . . . M), and many different coefficient values are 
required to represent many RTF’s in the conventional all-zero 
model and pole/zero model. 

III. PROFWED MODEL 

A.  Common-Acoustical-Pole and Zero Model 
To model the RTF’s efficiently with few parameters, we 

propose a new pole/zero model that has invariable (or constant) 
parameters for the RTF variations. This new model uses 
acoustical poles as the invariables. The RTF variations are 
caused by, for example, changes in the source and receiver 
positions, or moving people. Here, we will consider the RTF 
variations corresponding to the source and receiver positions. 

The background of the proposed model is that the acoustical 
poles of the RTF’s are physically common to all RTF’s. As 
is known, the general form of the pressure response between 
a source and a receiver in a room is given by the Green’s 
function of the room, which is dependent on the coordinates 
of these two points, Assuming the ideal case when the source 
pressure is not a sinusoidal signal but instead has the properties 
of a delta function, then the Green’s function will represent 
the RTF. The “eigenfrequencies (resonance frequencies)” and 
the “damping constant (corresponding to Q factors)” of this 
function do not depend on source and receiver positions [ 121. It 
can be assumed that the poles of the modeled RTF correspond 
to the “eigenfrequencies” and “damping constants” of the RTF; 
therefore, they do not depend on the source and receiver 
positions in a room. These resonance frequencies and those Q 
factors of each the room are referred to as common acoustical 
poles. 

Considering standing waves helps us to understand that all 
the RTF’s have common acoustical poles. Standing waves 
occur at the resonance frequencies, and the resonance can be 
observed at any receiver point except node points, as shown in 
Fig. 4. This shows that all the RTF’s between any source point 
and any receiver point include the information of the resonance 
frequencies, i.e., all the RTF’s have common acoustical poles, 
which correspond to the resonance characteristics. However, 

Fig. 5. 
CAPZ model. 

Block diagram of multiple RTF modeling based on the proposed 

the amplitudes are different for different receiver positions, as 
shown in Fig. 4. The difference in the amplitudes is reflected 
in the zeros of the RTF’s. 

Considering that the common acoustical poles do not de- 
pend on the source and receiver positions, we propose the 
common-acoustical-pole and zero (CAPZ) model. This can be 
represented in both pole/zero and ARMA forms: 

(4) 

yhere 
H(rj, z )  proposed CAF’Z model of an RTF 

Pi common acoustical pole, 
ai common AR coefficient. 

The difference between (4) and (3) is that in (4), poles p i  
and AR coefficients ai do not depend on the rj. 

With the proposed model, first the common acoustical poles 
are estimated. Then, only zeros are estimated for each RTF. 
With the conventional pole/zero model, on the other hand, both 
poles and zeros are estimated for each RTF. The block diagram 
of the proposed modeling of the RTF’s is shown in Fig. 5.  
The proposed model represent RTF’s with one recursive filter 
that has common AR coefficients a; and with nonrecursive 
filters that each have a unique set of MA coefficients b i ( r j ) .  

Consequently, the proposed model requires P + M x (Q + 1) 
coefficients to represent M RTF’s H(rj, z )  Cj = 1, . . . , M).  

corresponding to each rj, 

B. Estimation of Common Acoustical Poles 
by Least Squares Method 

All acoustical poles are not necessarily observed in a single 
RTF, although they are common to all the RTF’s in a room. For 
example, in Fig. 4, the resonance (standing wave) cannot be 
observed at node point C. This phenomenon can be explained 
as the effect of zeros in the RTF’s. Zeros are dependent on 
the source and receiver positions, and they strongly influence 
or cancel some of the poles [13]. Thus, zeros cause erroneous 
estimation of poles when poles are estimated from a single 
RTF. Common acoustical poles should therefore be estimated 
from many RTF’s corresponding to different rj ’s. 

Common acoustical poles are estimated as common AR 
coefficients, which are equivalent to the poles, as shown in (4). 
According to (4), the impulse response of the CAPZ model 
h(rj, k) is expressed by 

P Q 

i=l  i=O 
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where 
h(rj, k )  modeled impulse response for each rj, 
ai estimated common AR coefficients, 
bi(rj) estimated MA coefficients for each rj, 
k discrete time, 
S(k)  = 1 for k = 0, and S ( k )  = 0 for any other k (unit 
pulse function). 

The error (output error) EOut(r j ,  k )  between the actual 
impulse response h(rj, k) and the model impulse response 
?L(rj, k)  is defined by 

(6)  
However, finding ai’s and bi’s that minimize the mean- 

square of the output error (rj , k )  is known to be difficult. 
In such a situation, the “equation error” Eeq(rj,k) is intro- 
duced [ 141: 

Eeq(rj ,  k)=h(r j ,  k ) + x  aih(rj, k - i) - b i ( r j ) S ( k - i ) .  

(7) 
Note that ?L(rj, k - i) in (6) is replaced by h(rj, k - i) in (7). 

Now, the common AR coefficients are estimated as those 
that minimize the cost function Jeq. 

P Q 

i=l i=O 

M o o  

Jeq E:q(rj 9 k )  (8) 
j=1 k=O 

where M is the number of impulse responses used for estima- 
tion. Let us assume the order of the impulse responses is N ;  
in other words, h(rj, k) = 0 for k > N .  Then, Eeq(rj,  k )  = 0 
for k > N + P and the upper limit of summation parameter 
IC in (8) can be reduced to N + P. 

For the cost function Jeq to attain its minimum value, all 
the partial derivatives of (8) with respect to ai and b; (rj) must 
be equal to zero, as shown by 

Jeq - = o  ( i = 1 , 2 , . . . , P ) ,  
dai 

and 

Here, substituting (7) into (8) 

i=O / 

P 

x h(rj, k )  + amh(rj, k - m) ( m=l 

) 
Q 

- bm(r j )b(k  - m) 
m=O 

(i = 0 , 1 , 2 , . . . , Q :  j = 1 , 2 , . - * , M ) .  ( l lb)  

Finally, we get the following simultaneous equations: 

h(rj, k - i )h(r j ,  k )  + 
Q 

M N+P P ZE( m=l 
amh(rj, k - i) 

x h(r j , k  - m) - b m ( r j )  

x h(rj ,m - i) = 0 

(12a) 
) m=o 

( i =  1 , 2 , * . . , P ) ,  
P 

/z(rj,i) + u,h(rj,i - m) - b;(rj> = o 
m= 1 

( i = 0 , 1 , 2 , - - . , Q :  j = l , 2 , . . . , M ) .  (12b) 

Here, we use the relationship h(rj, k-i)S(lc-m) = h(rj,m- 

We can obtain the common acoustical poles ai (i = 
1,2, . . . , P) with least-squares error by solving these simul- 
taneous equations (12a) and (12b). The solution is given in a 
matrix formula in Appendix A. 

Determining the model orders P and Q is not easy. Several 
methods have been proposed for this problem, such as the 
AIC criterion [15]. However, here, P and Q are determined as 
follows. First, the normalized mean-squared output error index 
Jout, which corresponds to the accuracy of the modeling, is 
defined: 

i) . 

and the desired value of Jout is predetermined. Next, a set of 
P and Q are determined to minimize the sum of P and Q that 
satisfies the predetermined value of Jout . 

Notice that the MA order Q could be reduced in (7) at the 
pole estimation process. In other words, there are cases where 
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common acoustical poles can be estimated satisfactorily with 
an MA order that is lower than the model order. Small Q 
reduces the number of simultaneous equations in (12a) and 
(12b) and, thus, lightens the computational load for deriving 
common AR coefficients. 

The stability of the estimated poles is an important issue. 
When poles are estimated with Q = 0 in (7), the stability 
is assured, as is proven in Appendix B. However, the proof 
of stability for Q > 0 is left for future study. As far as we 
searched, we could not find any unstable estimated poles. 

I1 , I 

-40 

C .  Estimation of Common Acoustical 
Poles by Averaging Method 

When P and Q are large, a large amount of computation is 
needed to calculate the common AR coefficients that minimize 
the emor index Jeq of (8). In such a situation, a set of AR 
coefficients ai(rj) that minimizes Jeq(rj) , 

00 

k=O 

for each rj ( j  = 1, . . . , M) is first obtained. Common AR 
coefficients are then estimated as the averaged values of each 
set of AR coefficients: 

This estimation method requires far less computation than 
the method described in Section 111-B. Although the modeled 
RTF’s based on the averaged AR coefficients were stable 
as far as we tested, the theoretical background and stability 
conditions of this averaging method are left for future study. 

IV. ESTIMATION OF ACOUSTICAL 
POLES BY THE PROPOSED METHODS 

We evaluated the estimation methods by comparing esti- 
mated poles with the theoretical ones for two cases. In the 
first case, the model order is the same as the theoretical 
order of the acoustical poles. The second case is where the 
model order is much lower than the theoretical order. Because 
the acoustical poles could be obtained theoretically for a 
rectangular room [ 161, the estimation was conducted using 
the impulse responses of the RTF’s simulated by assuming 
a rectangular perpendicular room (86 m3: 6.7 x 4.3 x 3.0 
m3). These impulse responses were computed using the image 
method [17]. 

A .  Estimation with the Same Order as 
the Theoretical Pole Order 

In the first case, the acoustical poles were estimated with the 
same order as the theoretical order of the poles. The impulse 
responses were simulated under the condition that all the wall 
reflection coefficients were 0.95. The sampling frequency was 
250 Hz, and the frequency range was from 50 to 110 Hz. In 
such a low frequency range, the order of poles is small and 
the poles are located sparsely in the complex plane. Therefore, 

0 theoretical 
0.95 

Frequency (Hr)  I25 

(a) 

Frequency (Hz) 125 

(b) 

Fig. 7. Comparison of estimated A and theoretical (0) acoustical poles. The 
order of the poles is the same as the theoretical order for the estimations: (a) 
Poles estimated from 20 RTF’s with different source and receiver positions: 
(b) poles estimated from a single RTF. 

it is easy to compare the theoretical poles and the estimated 
common acoustical poles. Fig. 6 shows a typical simulated 
impulse response and its frequency response. 

The common acoustical poles were estimated from 20 RTF’s 
with different source and receiver positions using by the least 
squares method described in Section 111-B. Here, the order of 
poles P was chosen to be 50, which is nearly the same as the 
theoretical order. The order of zeros was chosen to be 120 to 
achieve a Jout of -30 dB. Note that the all-zero model needed 
250 coefficients to achieve a Jout of -30 dB. Fig. 7(a) shows 
the poles estimated from 20 RTF’s, and Fig. 7(b) shows the 
poles estimated from a single RTF. The values of T~ (vertical 
axis in Fig. 7) represent the absolute values of complex poles. 
The symbols (A) indicate the estimated poles. The symbols (0) 
indicate the theoretical poles which were calculated based on 
the averaged reverberation decay curve [16]. Fig. 7 indicates 
that many of the poles estimated from the 20 RTF’s fit the 
theoretical poles better than the poles estimated from a single 
RTF. 

B .  Estimation with a Lower Order than 
the Theoretical Pole Order 

The theoretical order of acoustical poles is proportional to 
the room volume and to the third power of the frequency. The 
order of poles is twice the order of modes. The approximate 
order of modes np for a room with a volume V up to the high 
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Frequency (Hr) 

Fig. 8. Example of the frequency response of an impulse response simulated 
assuming a m m  size of 6.7 x 4.3 x 3.0 m3 and wall reflection coefficients 
of 0.85. The frequency range is from 60 to 320 Hz. The sampling frequency 
is 800 Hz. 

Frequency (Hz) 

Fig. 10. 
show the frequencies of the theoretical poles that have high Q factors. 

Frequency response of the averaged AR coefficients. The arrows 

Frequency (Hr) 

Fig. 9. Frequency response of the common acoustical poles that are estimated 
with a lower order of poles than the theoretical order. The arrows show the 
frequencies of the theoretical poles that have high Q factors. 

frequency fc is [12] 
3 np = - ~ ( e )  4a 

3 

where c is the velocity of sound. Therefore, the order of poles 
is too large for all of them to be estimated when the frequency 
is high, and the room is large. For example, when the room 
volume is 86 m3 and the upper frequency is 320 Hz, the 
order of poles is 1200. For such a situation, we propose to 
estimate common acoustical poles with a lower order than the 
theoretical order of poles. 

We used 10 impulse responses simulated for different source 
and receiver positions in a room whose volume was 86 m3. The 
conditions of the simulation were that all the wall reflection 
coefficients were 0.85, the sampling frequency was 800 Hz, 
and the frequency range of the band-pass filter was from 
50 to 320 Hz. Fig. 8 shows a typical frequency response 
of the simulated impulse response. The theoretical order of 
the poles is 1200 at frequencies below 320 Hz for this room. 
The estimation of the poles was conducted with pole order 
P = 100 and zero order Q = 200 using the least squares 
method in Section 111-B. 

The solid line in Fig. 9 shows the frequency response of 
the transfer function 

1 
P A ( z )  = 

1 + 
where ai (i = 1 ,2 ,  . . . , P) are estimated common AR coeffi- 
cients. The peaks of this response correspond to the frequen- 
cies of the estimated poles. The arrows in Fig. 9 indicate the 
frequencies of the theoretical poles that have high Q factors. 
Fig. 9 shows that the estimated poles correspond well to the 
theoretical poles that have high Q factors. On the other hand, 
these theoretical poles are not clear in the single RTF in Fig. 8. 

The solid line in Fig. 10 shows the frequency response 
derived by the averaging method in Section 111-C, and again, 

echo 
I 

residual Estimation of common m 
Fig. 1 1 .  
common AR Coefficients. 

Acoustic echo canceller that has a fixed filter with estimated 

the arrows indicate the frequencies of the theoretical poles that 
have high Q factors. It is easily understood that theoretical 
poles are also well estimated by the averaging method. 

The following summarizes the results for these two cases: 

i) Common acoustical poles are better estimated from 
many RW's than from a single RTF. 

ii) 

iii) 

Poles estimated with the same order as the theoretical 
pole order fit well with the theoretical poles. 
Poles estimated with a lower order than the theoretical 
pole order correspond to the major resonance frequen- 
cies that have high Q factors. 

iv) The averaging method in Section 111-C also estimates 
theoretical poles well. 

v. EFFECTIVENESS OF THE PROPOSED MODEL 
The effectiveness of the proposed CAPZ model was eval- 

uated by applying it to an acoustic echo canceller (AEC). 
AEC's are widely used to cancel echo signals and to prevent 
acoustic feedback in teleconference systems or in active noise 
controllers. The AEC reduces the echo signal by subtracting 
the estimated echo signal. The estimated echo signal is pro- 
duced by an adaptive filter that models the RTF between a 
loudspeaker and a microphone. 

Fig. 11 shows a block diagram of an AEC based on the 
proposed CAPZ model. It has a series-parallel-type structure 
and it has a fixed filter with estimated common AR coefficients 
and an adaptive filter with variable MA coefficients. The 
AEC first measures multiple impulse responses for different 
microphone positions using the dotted right-hand outer loop 
in the figure. Then, the common AR coefficients are estimated 
and copied to the fixed filter. 

This AEC was simulated in a computer using impulse 
responses measured with different source and receiver posi- 
tions in a real room. The room volume was 80 m3, and its 
reverberation time was 0.6 s. Because the proposed model is 
especially effective at low frequencies, the frequency range of 
the impulse responses was set to 60 to 800 Hz. The sampling 
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Times (s) 0.5 

Fig. 12. 
sampling frequency is 2 kHz. 

Example of the measured impulse response in a real room. The 

Ada Iive tiller 

. residual echo l+Wa 

Fig. 13. Acoustic echo canceller based on the conventional all-zero model. 

frequency was 2 kHz. Fig. 12 shows an example of the 
measured impulse response. 

The number of coefficients was 250 for the fixed filter and 
450 for the adaptive filter. These numbers were chosen to 
achieve 35 dB of stationary echo retum loss enhancement 
(ERLE), where ERLE is defined as the ratio of echo power 
to residual echo power: 

echo power 
residual echo power 

ERLE = 101oglo 

Because the orders of the filters were so large, common 
AR coefficients were obtained using the averaging method 
in Section 111-C with 10 measured impulse responses. The 
common AR coefficients were copied to the fixed filter, and 
the normalized LMS algorithm [ 181 was used for the adaptive 
MA filter. 

The AEC was evaluated using an impulse response that 
was not used for estimating the common AR coefficients. The 
ERLE convergence of the AEC based on the proposed CAPZ 
model was compared with an AEC based on the conventional 
all-zero model, which is shown in Fig. 13. The conventional 
AEC had only an adaptive filter and required 800 coefficients 
to achieve 35 dl3 of stationary ERLE. The proposed AEC 
needed only about half as many adaptive filter coefficients as 
the conventional AEC because the proposed model reduced 
the number of the variable parameters (MA coefficients) by 
using common AR coefficients. Fig. 14 shows the ERLE 
convergence curve of the two AEC's.  Because the smaller 
number of adaptive filter coefficients gives faster convergence, 
the proposed AEC converges about 1.5 times faster than the 
conventional A E C .  

Thus, the proposed model reduces the number of variable 
parameters for RTF variations and makes the adaptive filter 
converge quickly. These results show the efficiency of the 
proposed model. 

VI. CONCLUSION 
A new model has been proposed for a room transfer function 

by using common acoustical poles, which are invariant for the 
RTF variation due to changes in source or receiver position. 
We also presented two methods of estimating the common 
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Fig. 14. ERLE of two AEC's. The solid line shows the convergence of an 
AEC with a fixed AR filter with 250 coefficients and an adaptive MA filter 
with 450 coefficients based on the proposed model. The dotted line shows 
the convergence of an AEC with an adaptive MA filter with 800 coefficients 
based on the conventional all-zero model. The frequencies were from 60 to 
800 Hz, and the sampling frequency was 2 kHz. 

acoustical poles as common AR coefficients: i) by minimiz- 
ing the mean-squared equation error for multiple impulse 
responses and ii) by averaging the AR coefficients derived 
from each impulse response. The estimated common acoustical 
poles agree well with the theoretical poles when the estimation 
is conducted with the same order as the theoretical pole 
order. When a lower order than the theoretical one is used, 
the estimated common acoustical poles represent the major 
resonance properties of the room. 

The proposed common-acoustical-pole and zero model re- 
quires far fewer parameters that depend on the RTF variation 
than the conventional models require. Its effectiveness was 
confirmed in a simulation of an acoustic echo canceller. It 
required only half as many adaptive filter coefficients up 'to 
800 Hz and converged about 1.5 times faster than an acoustic 
echo canceller based on the conventional all-zero model. 

APPENDIX A 
CALCULATION METHOD OF COMMON AR 

COEFFICIENTS IN A MATRIX FORMULA 
Equation (7) for j = 1,2,  

is rewritten in matrix form as 
M and k = 0 , 1 , 2 , .  . . N + P  

X =  

L 

a =  b(rj) = 

(A.3) 
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A =  

-A1 D 
- 

A2 D O  

0 ... 
: (A.5) 

-AM D 

The cost function Jeq of (8) is equal to eTe, where denotes 
the transpose, and the vector x that minimizes eTe is given by 

z = (ATA)-lATh. (A.@ 

This gives the solution of simultaneous equations (12a) and 
(12b). 

APPENDIX B 
STABILrrY OF COMMON POLES FOR Q = 0 

Equation (A.8) is rewritten as 

X =  

0 
I D T A ~  o DTD . . .  O I  

I J  
D ~ D  

Assuming Q = 0 

D = [I, O,O,  . . . , O I T .  (A. 10) 

D ~ D  = [i] 

D ~ A  = [o, 0 , .  . . , 0IT 

1 -I  

0 

= I  1 

Equation (A. 13) gives 
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(A. 1 1) 

(A.12) 

(A.13) 

Here, +j(IC),  IC = 1,2, . . . , N is defined as 

(A.14) 

N - k  

+ j ( k )  = h( r j , i )h ( r j , i+  k). (A.15) 
i=O 

P 

Aj = 

0 
0 
0 

. . .  

... 

... 

N + P + 1  
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(A. 17) Yoichi Haneda (A’92) was bom in Sendai, Japan, 
on June 17, 1964. He received the B.S. and M.S. 
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